

REPORT TO

HEALTH INFRASTRUCTURE

ON

DETAILED (STAGE 2) SITE INVESTIGATION

FOR

PROPOSED HOSPITAL DEVELOPMENT

AT

FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Date: 9 November 2023 Ref: E35821PRrpt3

JKEnvironments www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Craig Ridley

Associate | Environmental Scientist

Report reviewed by:

Brendan Page

Principal | Environmental Scientist

CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E35821PRrpt3	Final Report	9 November 2023

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Health Infrastructure ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed hospital redevelopment at Finley Hospital, 24 Dawe Avenue, NSW ('the site'). The purpose of the investigation is to make an assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2 attached in the appendices.

The DSI is required to inform the masterplan and design stage of the proposed hospital redevelopment. JKE note that a DSI is the second step in the contaminated land assessment process for planning approval with regards to Chapter 4 of State Environmental Planning Policy (Resilience and Hazards) 2021.

JKE understand that the proposed development is currently in the master planning and early design phase of the project. The proposed development will likely include additions to the existing buildings and/or new buildings constructed on the site. The development may also include refurbishment of the existing buildings. Conceptual drawings were not provided to JKE.

The primary aims of the investigation were to further characterise the site and make an assessment of the soil contamination conditions, and inform the preparation of a Remediation Action Plan (RAP), if required. The investigation included a review of historical information presented in the Preliminary Site Investigation (PSI), soil sampling from an additional 32 locations and groundwater sampling from five monitoring wells installed at the site. The site has historically been used for public recreation until circa 1960, and has been used for a hospital since.

The investigation identified asphaltic concrete (AC) pavement and/or fill soils to depths of approximately 0.2m to 1m below ground level (BGL), underlain by alluvial silty clay and silty sandy clay. The fill typically comprised of silty clay and silty clayey sand with inclusions of ash, slag, gravel, building rubble (asphalt, brick, ceramic and plastic fragments), root and root fibres. A hydrocarbon odour was noted within the fill soils in BH103 to a depth of approximately 0.6mBGL. BH103 was located within close proximity to the underground storage tanks (USTs) in the south of the site, as shown on Figure 2 attached in the appendices.

During drilling, groundwater seepage was encountered in three locations at depths of approximately 4.4m to 4.8mBGL. The standing water level (SWL) recorded in the monitoring wells installed at the site ranged from approximately 3.6m to 3.7mBGL. The surface elevations and the groundwater levels were generally consistent between the monitoring wells and the direction of groundwater flow could not be confirmed from the measured SWLs. JKE note that MW1 recorded a lower SWL prior to sampling. Considering multiple lines of evidence, the SWL measured during sampling appeared to be anomalous and not representative of the true groundwater conditions.

The DSI identified total recoverable hydrocarbons (TRHs) in soil above the human health and ecological site assessment criteria (SAC). However, the SAC selected were conservative and the concentrations detected were not considered to pose an unacceptable risk to human health and ecological receptors in the context of the proposed development.

The DSI identified USTs and odorous fill soils which may potentially pose risk to receptors. The DSI has not identified unacceptable risks that warrant remediation in our opinion. However, due to the sampling data gaps beneath buildings and due to the potential for localised impacts in the UST pit, we recommend that a RAP be prepared to provide a framework to manage the removal of the USTs and potential risks associated with contamination.

Based on the available results, and at the time of reporting, the following preliminary waste classifications are assigned:

- Fill soils (with the exception of soils and backfill sands associated with the USTs) tested as part of this investigation
 is assigned a preliminary classification of General Solid Waste (non-putrescible);
- Natural silty clay in the vicinity of TP115 is assigned a preliminary classification of **General Solid Waste (non-putrescible)** due to the elevated TRH concentrations recorded;
- Natural silty clay and silty sandy clay (with the exception of the soil in the vicinity of TP115 and in the vicinity of the USTs) will likely meet the definition of Virgin Excavated Natural Material (VENM) for off-site disposal or reuse purposes; and
- The backfill sands, fill soils and natural soils in the vicinity of the USTs have not been assigned a preliminary classification as part of this investigation.

Based on the findings of the investigation, JKE is of the opinion that the site is suitable for the proposed development via implementation of a suitable RAP. The following is recommended:

- A RAP is to be prepared for the removal, remediation and validation of the USTs and associated infrastructure. The RAP is to include an unexpected finds protocol (UFP). Provisions are to be included within the RAP for additional investigation in the building footprints in the event that the current buildings are not retained, noting this would need to occur once access is available (i.e. following demolition); and
- Undertake a validation assessment documenting the works.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	IIVIK	ODUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	SCOPE OF WORK	2
2	SITE I	NFORMATION	3
	2.1	SUMMARY OF PREVIOUS INVESTIGATIONS	3
	2.2	SITE IDENTIFICATION	4
	2.3	SITE DESCRIPTION SUMMARY	5
	2.4	LOCAL METEOROLOGY	6
	2.5	SUMMARY OF GEOLOGY AND HYDROGEOLOGY	7
3	SUMI	MARY OF SITE HISTORY INFORMATION	8
4	CONC	CEPTUAL SITE MODEL	9
	4.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	9
	4.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	10
5	SAMI	PLING, ANALYSIS AND QUALITY PLAN	11
	5.1	SUMMARY OF SAQP	11
	5.2	DEVIATIONS TO THE SAQP	11
	5.3	LABORATORY DETAILS	12
6	SITE	ASSESSMENT CRITERIA (SAC)	13
	6.1	Soil	13
	6.2	GROUNDWATER	15
7	RESU	LTS	16
	7.1	SUMMARY OF DATA (QA/QC) EVALUATION	16
	7.2	Subsurface Conditions	16
	7.3	FIELD SCREENING	17
	7.4	SOIL LABORATORY RESULTS	18
	7.5	GROUNDWATER LABORATORY RESULTS	20
8	PRELI	MINARY WASTE CLASSIFICATION ASSESSMENT	23
	8.1	PRELIMINARY WASTE CLASSIFICATION OF FILL	23
	8.2	PRELIMINARY CLASSIFICATION OF NATURAL SOIL	23
9	DISC	ussion	24
	9.1	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	24
	9.2	DECISION STATEMENTS	27
	9.3	Data Gaps	27
10	CONC	CLUSIONS AND RECOMMENDATIONS	29
11	LIMIT	TATIONS	30

List of Tables

Table 2-1: Site Identification	4
Table 3-1: Summary of Historical Land Uses / Activities	8
Table 4-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	9
Table 4-2: CSM	10
Table 5-1: Laboratory Details	12
Table 6-1: Details for Asbestos SAC	13
Table 6-2: Waste Categories	14
Table 7-1: Summary of Subsurface Conditions	16
Table 7-2: Summary of Field Screening	17
Table 7-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	18
Table 7-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria	19
Table 7-5: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)	20
Table 9-1: Data Gap Assessment	27

Attachments

Appendix A: Report Figures & Survey Plan	
Annendix B: Selected Site Photographs	

Appendix C: Laboratory Results Summary Tables

Appendix D: Borehole & Test Pit Logs

Appendix E: Laboratory Reports & COC Documents

Appendix F: Report Explanatory Notes Appendix G: Data (QA/QC) Evaluation Appendix H: Field Work Documents

Appendix I: Guidelines and Reference Documents Appendix J: Sampling, Analysis & Quality Plan

Abbreviations

Ambient Background Concentrations	ABC
Asphaltic Concrete	AC
Added Contaminant Limits Ashortes Containing Material	ACL ACM
Asbestos Containing Material Australian Drinking Water Guidelines	ACIVI
Area of Environmental Concern	ADWG
Asbestos Fines/Fibrous Asbestos	AF/FA
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Above-Ground Storage Tank	AST
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	вом
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	сос
Conceptual Site Model	CSM
Development Application	DA
Dial Before You Dig	DBYD
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragment(s)	FCF
Health Investigation Level	HIL
Health Screening Level	HSL
Health Screening Level-Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA NEPM
National Environmental Protection Measure	OCP
Organophosphate Posticides	OPP
Organophosphate Pesticides Polycyclic Aromatic Hydrocarbons	PAH
Potential ASS	PASS
Polychlorinated Biphenyls	PCB
Per-and Polyfluoroalkyl Substances	PFAS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA
Quality Control	QC QC
	ą.

Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standing Water Level	SWL
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS

Units

Litres L Metres BGL mBGL Metres m Millivolts mV Millilitres ml or mL Milliequivalents meq micro Siemens per Centimetre μS/cm Micrograms per Litre μg/L mg/kg Milligrams per Kilogram Milligrams per Litre mg/L Parts Per Million ppm Percentage %

1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed hospital redevelopment at Finley Hospital, 24 Dawe Avenue, NSW ('the site'). The purpose of the investigation is to make an assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2 attached in the appendices.

The DSI is required to inform the masterplan and design stage of the proposed hospital redevelopment. JKE note that a DSI is the second step in the contaminated land assessment process for planning approval with regards to Chapter 4 of State Environmental Planning Policy (Resilience and Hazards) 2021¹.

A geotechnical investigation was undertaken previously to this DSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 35821YFrpt, dated 14 June 2023)². This report should be read in conjunction with the JKG report.

JKE has previously undertaken a PSI at the site. A summary of this information has been included in Section 2.

1.1 Proposed Development Details

JKE understand that the proposed development is currently in the master planning and early design phase of the project. The proposed development will likely include additions to the existing buildings and/or new buildings constructed on the site. The development may also include refurbishment of the existing buildings.

Conceptual drawings were not provided to JKE. However, we anticipate that the proposed development will likely be constructed consistent with the existing levels and expect that only minor earthworks (cut/fill) would be required to accommodate the proposed development.

1.2 Aims and Objectives

The DSI aims to further characterise the site and make an assessment of the soil contamination conditions, and inform the preparation of a Remediation Action Plan (RAP), if required. The objectives of the DSI are to:

- Supplement the PSI data by completing the DSI, including investigation of the soils in accessible areas;
- Assess the potential risks posed by contamination to the receptors identified in the Conceptual Site Model (CSM);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

² JKG, (2023). Report to Health Infrastructure on Geotechnical Investigation for Proposed Alterations and Additions at Finley Hospital, 24 Dawe Avenue, Finley, NSW. (referred to as JKG report)

¹ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

1.3 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: EP58924PR) of 28 June 2023, the consultancy agreement (HI22656) and written acceptance from the client of the variation dated 2 August 2023. The scope of work included the following:

- Review of site information and site history information presented in the PSI;
- Review and update (if required) the CSM;
- Implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)³, other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁴ and SEPP Resilience and Hazards 2021.

A list of reference documents/guidelines is included in the appendices.

⁴ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2

³ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

2 SITE INFORMATION

2.1 Summary of Previous Investigations

2.1.1 Preliminary Site Investigation (PSI)

JKE previously prepared a PSI for the proposed hospital redevelopment at the site in 2023⁵. The scope of the PSI included a desktop review of historical information, a site walkover inspection, and soil sampling from 12 locations (BH1 to BH9 and TP10 to TP12 inclusive) as shown on the figures attached in the appendices. The site was historically used for public recreation until circa 1960, and has been used for a hospital since. Potential contamination sources identified at the site and the immediate surrounds included:

- Historic filling activities;
- Underground storage tanks (USTs) present within the site;
- Use of pesticides;
- Hazardous building materials present within existing and/or former structures;
- On-site generator and associated fuel storage; and
- Maintenance workshop/gardeners shed and associated flammable good store.

The PSI identified fill (i.e. historically imported or placed soils) to depths of approximately 0.2m to 0.8m below ground level (BGL), underlain by sandy, silty and clayey alluvial soils. Groundwater seepage was encountered in boreholes BH2 to BH5 inclusive at depths of approximately 3.5m to 4.5mBGL. On completion of auger drilling, the standing water levels (SWLs) in the boreholes were measured to range from approximately 3.8m to 4.8mBGL. The fill typically comprised silty sand, sandy and/or clayey silt and silty clay with inclusions of ash, gravel and root fibres. No stained or odorous fill soils were encountered.

The PSI identified fill soils at one location impacted by hydrocarbons (total recoverable hydrocarbons – TRHs) at concentrations that were above the adopted site assessment criteria (SAC).

The PSI did not identify contamination that would preclude the proposed development and a trigger for remediation was not identified. The following was recommended:

- Undertake a DSI to better assess the risks associated with the areas of environmental concern (AEC)/potential sources of contamination and to assess whether remediation is required; and
- If required (based on the findings of the DSI), a RAP is to be prepared. Any requirements documented in a RAP are to be implemented and the site is to be remediated and validated.

2.1.2 Other Reports Reviewed by JKE

As part of the historical information review for the PSI, JKE also reviewed the following reports:

- Hazardous building materials (hazmat) survey, prepared by Environmental and Safety Professionals (ESP) in 2015⁶;
- A due diligence report, prepared by Northrop Consulting Engineers in 2022⁷; and

Northrop Consulting Engineers, (2022). Finley Hospital – Site Due Diligence Report (Ref: SU221522-01-MD-1, Revision 2)

⁵ JKE, (2023a). Report to Health Infrastructure on Preliminary (Stage 1) Site Investigation for Proposed Alterations and Additions at Finley Hospital, 24 Dawe Avenue, Finley, NSW. (Referred to as PSI)

⁶ Environmental and Safety Professionals, (2015). Report for Murrumbidgee LHD Asset Services. Hazardous Materials Survey: Finley Hospital, 23 Dawe Street, Finley NSW 2713. (Ref: J30414)

An Aboriginal heritage due diligence assessment, prepared by NGH in 2023⁸.

The hazmat survey identified friable asbestos materials within the main hospital building and bonded/non-friable asbestos materials (i.e. ACM) within several buildings across the site. Synthetic mineral fibres (SMF) were identified in all buildings and potential polychlorinated biphenyls (PCBs) containing capacitors were noted in the lift shaft work area. Ozone depleting substances were identified in three air conditioning and refrigerant systems on the site. Lead-based paint systems were not identified on the site. JKE noted that the version of the report supplied only included odd-numbered pages and was therefore incomplete.

The due diligence report identified the following:

- Friable asbestos was identified in the boiler room and was considered to be 'medium' risk. ESP
 recommended the asbestos was managed under an asbestos management plan (AMP) and should be
 removed as soon as practicable; and
- Bonded/non-friable asbestos was identified in the health services, community health, staff accommodation, gardener's shed and mortuary buildings and was generally considered to be 'low' risk. ESP recommended management of the asbestos under a suitable AMP.

The Aboriginal heritage due diligence assessment considered it was unlikely that Aboriginal heritage objects or areas of archaeological potential were present within the site and recommended the development could proceed with caution.

2.2 Site Identification

Table 2-1: Site Identification

Current Site Owner (certificate of title):	Health Administration Corporation
Site Address:	24 Dawe Avenue, Finley, NSW
Lot & Deposited Plan:	Lot 246 in DP1016411
Current Land Use:	Hospital
Proposed Land Use:	Hospital
Local Government Authority:	Berrigan Shire Council
Current Zoning:	RU5: Village
Site Area (m²) (approx.):	20,000
RL (AHD in m) (approx.):	108-109
Geographical Location (decimal degrees) (approx.):	Latitude: -35.641713
	Longitude: 145.568239

⁸ NGH Pty Ltd, (2023). Aboriginal Heritage Due Diligence Assessment; Finley Hospital Redevelopment. (Ref: 22-611, draft issued 31 January 2023)

Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2

2.3 Site Description Summary

The site is located in a predominantly residential area of Finley and is bound by Dawe Avenue to the North and Scoullar Street to the south. The site is located approximately 1km to the south-west of Finley Lake (a man-made lake). The regional topography is characterised by a typical flood plain with near level topography. The site itself has similar topography as the surround with near level terrain.

A walkover inspection of the site was undertaken by JKE on 11 May 2023 for the PSI. The site remained generally unchanged since the PSI. a summary of the key observations is provided below:

- Several single-storey buildings of brick and fibre cement construction with metal roofing were observed across the site;
- A stand-alone garage/shed of metal sheet construction was located in the west of the site and several metal carport and shade structures were observed across the site;
- A crescent-shaped asphaltic concrete (AC) paved driveway provided vehicular ingress/egress from
 Dawe Avenue. A second AC driveway extended in a southerly direction along the western site
 boundary from Dawe Avenue which provided vehicular access to the neighbouring property. AC
 pavement connected these two driveways and was used for ambulance transfers;
- A gravel driveway was located in the south of the site, extending north-westerly from the southeastern corner of the site. A gravel carpark was also located in the south of the site;
- Minor quantities of paints, fuel, solvents (mineral turpentine), lubricants and grease were typically stored within the maintenance building (see Figure 2). The products were stored in appropriate containers;
- Two USTs were observed to the west of the maintenance shed and there was a generator to the northeast of the USTs (see Figure 2). JKE was advised by hospital staff that the USTs were no longer in use, though previously contained fuel oil for the on-site boilers;
- Mature native trees (approximately 5m in height) were observed in the north, east and south-east of
 the site. Flowering plants in formed gardens and shrubbery were observed in the north of the site near
 the main hospital entrance, and within the west of the site. The vegetation appeared to be generally
 healthy based on a cursory inspection; and
- Sensitive environments such as wetlands, ponds, creeks or extensive areas of native vegetation were not observed on site or in the immediate surrounds.

Selected site photographs were obtained during the course of the DSI are attached in the appendices.

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North Dawe Avenue, with low-density residential and agricultural land use beyond;
- South Scoullar Street with low-density residential and retirement living (Alumuna) beyond;

- East Diggers Park (recreational space) with Donaldson Street and low-density residential beyond; and
- West residential care facility and medical centre (Finley Regional Care), with Hamilton Street and agricultural land use beyond.

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.4 Local Meteorology

Key meteorological data for the Deniliquin Visitor Centre weather station (approximately 55km to the west of the site) available on the Bureau of Meteorology (BOM)⁹ website has been reviewed and JKE note the following:

- The highest mean rainfall occurs in June, with a total of 39.5mm;
- The lowest mean rainfall occurs in February, with a total of 27.5mm; and
- In the week leading up to the DSI field work, a total of 5mm of rainfall was recorded.

⁹ http://www.bom.gov.au/climate/averages/tables/cw_074128.shtml visited on 30 October 2023

2.5 Summary of Geology and Hydrogeology

2.5.1 Regional Geology

Regional geological information presented in the PSI indicated that the site is underlain by alluvial floodplain deposits, which typically consists of silt, very fine to medium-grained lithic to quartz rich sand and clay.

2.5.2 Acid Sulfate Soil (ASS) Risk and Planning

Acid sulfate soil (ASS) risk and planning information presented in the PSI indicated that the site is not located within an ASS risk area.

2.5.3 Hydrogeology

Hydrogeological information presented in the PSI indicated that:

- The subsurface conditions at the site consist of moderate to high permeability (alluvial) soils overlying relatively deep bedrock. Abstraction and use of groundwater at the site or in the immediate surrounds may be viable under these conditions, however the use of groundwater is not proposed as part of the development as far as we are aware. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur. JKE note that groundwater may be used in the vicinity of the site for irrigation purposes;
- The nearest functioning borehole was located approximately 160m to the east of the site. This bore is located within a residential property and is assumed to be used for irrigation purposes; and
- Considering the local topography, surrounding land features and groundwater observations presented in the JKG report, JKE anticipate groundwater to flow towards the south.

2.5.4 Water Bodies

The closest surface water body is Finley Lake, located approximately 1km to the north-east of the site. This is inferred up-gradient of the site. This water body is man-made and it is unknown whether there is any hydraulic connectivity between the lake and the aquifer.

The nearest natural surface water body is the Tuppal Creek, located approximately 12km to the south-west of the site. Due to the distance from the site, this water body is not considered to be a receptor.

3 SUMMARY OF SITE HISTORY INFORMATION

A time line summary of the historical land uses and activities is presented in the following table. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE during the PSI and over the course of the DSI.

Table 3-1: Summary of Historical Land Uses / Activities

Year(s)	On-site - Potential Land Use / Activities	Off-site - Potential Land Use / Activities
Prior to 1897	Public recreation (vacant land).	Agricultural (crops and grazing), public
		recreation and low-density residential.
1897 – c1960	Land dedicated for public recreation (race	
	course).	
	The aerial historical photographs indicate that	
	land clearing/construction of a dedicated race course did not occur within the site.	
	1955: The dedication of land for a race course was revoked.	
c1960 to date	Hospital and associated activities. Possible	
	filling/importation of materials.	

4 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 9.

4.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Table 4-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	CoPC
Fill material – The site has been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated, or the material could have been 'site won' and placed during minor earthworks required for regrading paved areas or prior to construction of buildings.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), PAHs, organochlorine pesticides (OCPs), organophosphate pesticides (OPPs) PCBs and asbestos.
The PSI identified filling to depths of approximately 0.2mBGL to 0.8mBGL (fill depths are shown on Figure 2). The fill contained inclusions of ash and gravel.	
<u>Fuel storage</u> – Two USTs were identified at the site (see Figure 2). The USTs were historically used to store fuel oil for the boilers at the site.	TRH, BTEX and PAHs.
Maintenance Workshop/Gardeners Shed – The site includes a maintenance workshop/gardeners shed and a flammable goods store (see Figure 2). It is possible that leaks/spills and/or releases of oils, solvents and fluids (e.g. turpentine/mineral spirits associated with typical painting activities, rather than chlorinated compounds) may have occurred.	Heavy metals, TRHs and PAHs.
On-site Generator — A back-up generator was observed to the east of the plant room of the main hospital building (see Figure 2). The generator appeared to be self-contained. Minor leaks and/or spills of fuel/oils may have occurred during maintenance and/or use.	TRH, BTEX and PAHs.
<u>Use of pesticides</u> – Pesticides may have been used beneath the buildings and/or around the site.	Heavy metals and OCPs.

Source / AEC	CoPC
Hazardous Building Material – Hazardous building materials may be present as a result of former building and demolition (renovation) activities. These materials have previously been identified in the existing buildings/structures on site.	Asbestos, lead and PCBs.

4.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 4-2: CSM

Table 4-2: CSIVI	
Potential mechanism for contamination	The potential mechanisms for contamination are most likely to include 'top-down' impacts, spills and subsurface release. Subsurface release relates to the USTs.
Affected media	For the DSI, soil and groundwater have been identified as the potentially affected media. The need to assess soil vapour will depend on the initial assessment of the soil and groundwater conditions.
Receptor identification	Human receptors include site occupants/users (including adults and children) in a healthcare setting, construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users (in residential and retirement living setting) and groundwater users (recreation/irrigation use). Ecological receptors include terrestrial organisms and plants within unpaved and landscaped areas.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX), and primary/secondary contract with groundwater for irrigation. The potential for exposure would typically be associated with the construction and excavation works, future use of the site, or groundwater use associated with the use of bore water. Potential exposure pathways for ecological receptors include primary/direct contact and ingestion. Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings.
Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the buildings (from soil or groundwater contamination); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; and Contact with groundwater during construction and/or migration of groundwater off-site into areas where groundwater is being utilised as a resource (i.e. for irrigation).
Presence of preferential pathways for contaminant movement	Major services (i.e. on the 'Before You Dig Australia' [BYDA] plans) were not identified that would be expected to act as preferential pathways for contamination migration. However, it is noted that localised services exist that are not shown on those plans and the details of such services must be reviewed/considered in further detail in the event mobile contamination is identified.

5 SAMPLING, ANALYSIS AND QUALITY PLAN

5.1 Summary of SAQP

JKE prepared a stand-alone SAQP¹⁰ for the DSI which is attached in the appendices. The SAQP can be summarised as follows:

- Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2 of this report;
- Soil samples were obtained from 32 additional locations (BH/TP101 to BH/TP132 inclusive), generally spread across the site, as shown on the attached Figures 2 and 3;
- A grid-pattern overlay was prepared for the site and locations were judgementally selected from within
 each grid, depending on access/disruption factors, underground services etc. The sampling locations
 were set out using a hand-held GPS (with an accuracy of ±5m);
- Soil samples were obtained using a combination of a track-mounted excavator, a track-mounted drill rig (spiral auger and SPT sampling methods) and hand tools;
- Soil samples were obtained between 19 and 22 September 2023;
- Three groundwater monitoring wells were installed in BH101 (MW101), BH103 (MW103) and BH104 (MW104) during the DSI. Two monitoring wells were installed previously by JKG in BH1 (MW1) and BH3 (MW3). The well locations are shown on the attached Figures 2 and 3. MW103 was targeted in close proximity to the location of the disused USTs, and MW104 was targeted in close proximity to the location of the current back-up generator. The remaining wells were generally positioned to provide spatial coverage of the site;
- The monitoring well construction details are documented on the respective borehole logs attached in the appendices;
- The monitoring wells were developed on 20 September 2023 using a combination of a submersible electric pump and disposable bailers. MW1, MW3, MW103 and MW104 were pumped until effectively dry. MW101 was developed until steady state conditions were achieved;
- The monitoring wells were allowed to recharge for approximately six days after development. Groundwater samples were obtained from all monitoring wells using low flow sampling techniques on 26 September 2023;
- The field monitoring records and calibration data are attached in the appendices; and
- Soil and groundwater samples were submitted to NATA accredited laboratories for analysis.

5.2 Deviations to the SAQP

The deviations to the SAQP are outlined below:

• The intention was to select soil samples for analysis for pH, cation exchange capacity (CEC) and clay content based on the results of the initial round of analysis. These parameters are used to adjust ecological SAC based on soil-specific parameters. Due to the length of the field work program and the short holding times for some of these analytes, representative natural soil samples were selected to provided spatial coverage of the site and to establish average values for each parameter. JKE note that

¹⁰ JKE, (2023b). Report to Health Infrastructure on Sampling, Analysis and Quality Plan (SAQP) for Detailed (Stage 2) Site Investigation (DSI) at Finley Hospital, 24 Dawe Avenue, Finley, NSW. (Referred to as SAQP)

the holding time for pH was exceeded and is discussed further in the Data Quality Evaluation presented in the appendices;

- The intention was to select the groundwater SAC for vapour intrusion based on the measured depth to groundwater during sampling. However, considering multiple lines of evidence, the SWL measured in MW1 during sampling was considered to be anomalous. Therefore, the SWL measured during development was adopted as the depth to groundwater for MW1. JKE note that this resulted in a more sensitive SAC being selected; and
- The SAQP did not provide details on how groundwater RLs were to be established. The relative heights
 of the groundwater monitoring well locations were interpolated based on the provided survey to
 establish approximate surface RLs of the monitoring wells. The SWLs were then subtracted from the
 inferred surface RLs to establish approximate groundwater levels relative to the Australian Height
 Datum (AHD).

Reference should be made to the SAQP attached in the appendices for further information. The above deviations to the SAQP are not likely to impact on the findings of the DSI.

5.3 Laboratory Details

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 5-1: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	334225 and 334243
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	39961 and 39962

6 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

6.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

6.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A) HIL-A were selected as a conservative measure due to the extent of landscaping/unsealed areas and the limited information regarding potential development details;
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B).
 HSLs were calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹¹; and
- Asbestos was assessed against the HSL-A criteria in soil and as present or absent in FCF. A summary of the asbestos criteria is provided in the table below:

Table 6-1: Details for Asbestos SAC

Guideline	Applicability
Asbestos in Soil	The HSL-A criteria will be adopted for the assessment of asbestos in soil. The SAC adopted for asbestos are derived from the NEPM 2013 and based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021) ¹² . The SAC include the following: • No visible asbestos at the surface/in the top 10cm of soil; • <0.01% w/w bonded asbestos containing material (ACM) in soil; and • <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. Concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):
	% w/w asbestos in soil = % asbestos content x bonded ACM (kg) Soil volume (L) x soil density (kg/L)
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams):

¹¹ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

¹² Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)

Guideline	Applicability	
	% w/w asbestos in soil =	% asbestos content x bonded ACM (g)
		Soil weight (g)

6.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. These have only be applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹³;
- ESLs were adopted based on the soil type; and
- EILs for selected metals were calculated using site specific soil parameters for pH, CEC and clay content. Representative soil samples were analysed and the arithmetic average of the parameters were calculated (pH of 8.5, CEC of 11.5cmolc/kg and 37% clay content). These data were used to select the added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013), and published ambient background concentration (ABC) presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹⁴. This method is considered to be adequate for the Tier 1 screening.

6.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered.

6.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁵ as outlined in the following table:

Table 6-2: Waste Categories

Category	Description
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste.
Restricted Solid Waste (non-putrescible)	 If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste.
Hazardous Waste	 If SCC > CT2 then TCLP not needed to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste.

¹³ Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997) (referred to as the Canadian Soil Quality Guidelines)

¹⁵ NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Waste Classification Guidelines 2014)

¹⁴ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4*. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.

Category	Description
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette.

6.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁶. Environmental values for the DSI include human uses (incidental contact and recreational water use), and human-health risks in non-use scenarios (vapour intrusion). Though the CSM did not identify ecological groundwater receptors (aquatic ecosystems), the data will be compared to ecological criteria for completeness and a discussion of any SAC exceedances will be provided in the Tier 1 risk assessment.

6.2.1 Human Health

- HSLs for a 'low-high density residential' exposure scenario (HSL-A/HSL-B). HSLs were calculated based on the soil type and the observed depth to groundwater; and
- The Australian Drinking Water Guidelines 2011 (updated 2021)¹⁷ were multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. with bore water used for irrigation). These have been deemed as 'recreational' SAC.

6.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁸. The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

¹⁸ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

¹⁶ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁷ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

7 RESULTS

7.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

7.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole and test pit logs attached in the appendices for further details.

Table 7-1: Summary of Subsurface Conditions

Profile	Description
Pavement	AC pavement was encountered at the surface in BH101 to BH103 and BH105. The pavement ranged in thickness from approximately 20mm to 100mm.
Fill	Fill was encountered at the surface or beneath the pavement in all boreholes and extended to depths of approximately 0.2m to 1mBGL. TP107 was terminated in the fill at a maximum depth of approximately 0.9m due to an obstruction (i.e. underground services).
	The fill typically comprised silty clay and silty clayey sand with inclusions of ash, slag, gravel, building rubble (asphalt, brick, ceramic and plastic fragments), roots and root fibres. A surficial gravel layer (i.e. road base) was encountered at the surface in BH122 and extended to a maximum depth of 0.1mBGL.
	A hydrocarbon odour was noted within the fill soils in BH103, to a depth of approximately 0.6mBGL. JKE note that BH103 was located within close proximity to the USTs in the south of the site.
Natural Soil	With the exception of TP107, alluvial silty clay and silty sandy clay was encountered in all boreholes and test pits and extended to maximum terminal depth of the investigation at approximately 6mBGL.
Bedrock	Bedrock was not encountered during the investigation.
Groundwater	Groundwater seepage was encountered in BH101, BH103 and BH104 at depths of approximately 4.4m to 4.8mBGL. All other boreholes and test pits remained dry on completion of drilling/excavation and a short time after.

7.3 Field Screening

A summary of the field screening results is presented in the following table:

Table 7-2: Summary of Field Screening

Aspect	Details
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0.1ppm to 25.2ppm equivalent isobutylene. These results indicate that relatively low concentrations of PID detectable VOCs were detected in the samples. The highest PID concentrations were in BH103 and correlated with the minor hydrocarbon odours at this location. Samples with elevated PID readings were analysed for TRH and BTEX.
Bulk Screening for Asbestos	The bulk field screening results are summarised in the attached report Table S5. All asbestos results were below the SAC. No ACM was visibly identified within the screened samples.
Groundwater Depth & Flow	Groundwater seepage was encountered in boreholes BH101, BH103 and BH104 during drilling at depths of approximately 4.4m to 4.8mBGL.
	SWLs measured in the monitoring wells installed at the site ranged from approximately 3.6 to 3.7mBGL. Groundwater RLs calculated on these measurements ranged from approximately 105mAHD to 105.2mAHD. The groundwater levels were generally consistent between the monitoring wells and the direction of flow could not be confirmed from the measured SWLs.
	JKE note that MW1 recorded a lower SWL prior to sampling. Considering multiple lines of evidence, the SWL measured during sampling appeared to be anomalous and not representative of the true groundwater conditions.
Groundwater Field Parameters	Field measurements recorded during sampling were as follows: - pH ranged from 6.12 to 6.61; - EC ranged from 1,443µS/cm to 15,916µS/cm; - Eh ranged from -4.6mV to 239.4mV; and - DO ranged from 0.4ppm to 2ppm.
	JKE note that the EC recorded in MW1 was approximately 5-10x greater than all other EC results. It is also noted that the groundwater was observed to have a bubbly/soapy characteristic on the well development field sheet. This is considered to be associated with impacts from soap/detergents in grey water. This has been discussed further in the tier 1 risk assessment.
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) were not detected using the interphase probe during groundwater sampling.

7.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 6.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

7.4.1 Human Health and Environmental (Ecological) Assessment

Table 7-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
		(1116/116)	Health SAC	JAC	
Arsenic	48	13	0	NSL	-
Cadmium	48	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Chromium (total)	48	40	0	0	-
Copper	48	160	0	0	-
Lead	48	75	0	0	-
Mercury	48	0.5	0	NSL	-
Nickel	48	29	0	0	-
Zinc	48	120	0	0	-
Total PAHs	48	2	0	NSL	-
Benzo(a)pyrene	48	0.4	NSL	0	-
Carcinogenic PAHs (as BaP TEQ)	48	0.6	0	NSL	-
Naphthalene	48	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
DDT+DDE+DDD	17	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
DDT	17	<pql< td=""><td>NSL</td><td>0</td><td>-</td></pql<>	NSL	0	-
Aldrin and dieldrin	17	1.2	0	NSL	-
Chlordane	17	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Heptachlor	17	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
PCBs	17	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
TRH F1	48	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
TRH F2	48	210	1	1	The TRH F2 concentration in one fill soil sample collected from TP118 (0-0.2m) exceeded the human health (HSL) and ecological SAC.
TRH F3	48	630	0	2	TRH F3 concentrations exceeded the ecological SAC in one fill soil sample collected from TP118 (0-0.2m) and one natural soil sample collected from TP115 (1.1-1.3m).
TRH F4	48	290	0	0	-
Benzene	48	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Toluene	48	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Ethylbenzene	48	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Xylenes	48	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Asbestos (in soil)	32	ACM <0.01 AF/FA <0.001	0	NA	Asbestos was not identified within the 500mL samples submitted for laboratory analysis.

Notes:

N: Total number (primary samples)

NSL: No set limit NL: Not limiting

7.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Section 6.1.4. The results are presented in the report tables attached in the appendices. A summary of the results is presented in the following table:

Table 7-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Arsenic	48	0	0	-
Cadmium	48	0	0	-
Chromium	48	0	0	-
Copper	48	NSL	NSL	-
Lead	48	0	0	-
Mercury	48	0	0	-

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Nickel	48	0	0	-
Zinc	48	NSL	NSL	-
TRH (C ₆ -C ₉)	48	0	0	-
TRH (C ₁₀ -C ₃₆)	48	0	0	-
BTEX	48	0	0	-
Total PAHs	48	0	0	-
Benzo(a)pyrene	48	0	0	-
OCPs & OPPs	17	0	0	A concentration of dieldrin was recorded in one fill soil sample collected from TP114 (0-0.2m). Dieldrin is assessed as total scheduled chemicals (as shown on Table S7 in the appendices) which has a CT1 threshold of 50mg/kg. The maximum dieldrin concentration was 1.2mg/kg. No other compounds captured within the total scheduled chemicals list were identified above the PQL. JKE note that the total scheduled chemicals concentration was below the 2mg/kg threshold for management in accordance with the Scheduled Chemicals Waste Chemical Control Order 2004 ¹⁹ , therefore the provisions of the CCO 2004 do not apply.
PCBs	17	0	0	-
Asbestos	32	-	-	Asbestos was not detected in the samples analysed.

N: Total number (primary samples)

NSL: No set limit

7.5 Groundwater Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 6.2. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

Table 7-5: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N^	Max. (μg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	5	4	0	0	-
Cadmium	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-

¹⁹ NSW EPA, (2004). Environmentally Hazardous Chemicals Act 1985. Chemical Control Order in Relation to Scheduled Chemical Wastes (CCO, 2004)

Analyte	N^	Max. (μg/L)	N> Human Health SAC	N> Ecological SAC	Comments	
Chromium (total)	5	2	0	0	-	
Copper	5	6	0	1	A copper concentration above the ecological SAC of 1.4μg/L was recorded in the groundwater sample collected from MW1.	
Lead	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
Mercury	5	0.06	0	0	-	
Nickel	5	24	0	1	A nickel concentration above the ecological SAC of $11\mu g/L$ was recorded in the groundwater sample collected from MW1.	
Zinc	5	27	0	5	Zinc concentrations above the ecological SAC of 8μg/L were recorded in the groundwater samples collected from all monitoring wells.	
Total PAHs	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
Benzo(a)pyrene	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
Carcinogenic PAHs (as BaP TEQ)	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
TRH F1	5	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-	
TRH F2	5	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-	
TRH F3	5	<pql< td=""><td>NSL</td><td>NSL</td><td>-</td></pql<>	NSL	NSL	-	
-TRH F4	5	<pql< td=""><td>NSL</td><td>NSL</td><td>-</td></pql<>	NSL	NSL	-	
Benzene	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
Toluene	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
Ethylbenzene	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
m+p-Xylene	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
o-Xylene	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	
Total Xylenes	5	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-	

Analyte	N^	Max. (μg/L)	N> Human Health SAC	N> Ecological SAC	Comments
рН	5	Min: 6.5 Max: 7.1	0	0	The pH of the groundwater samples ranged from pH 6.5 to pH 7.1 and were within the acceptable ranges for recreational and ecological SAC.
EC	5	16,000 μS/cm	NSL	NSL	The EC results ranged from 1,500μS/cm to 16,000μS/cm.

Notes:

^: Primary samples N: Total number NSL: No set limit NL: Not limiting

8 PRELIMINARY WASTE CLASSIFICATION ASSESSMENT

8.1 Preliminary Waste Classification of Fill

Based on the available results (including the PSI and DSI), and at the time of reporting, the fill is assigned a preliminary classification of **General Solid Waste (non-putrescible)**. Further assessment including additional testing is required to confirm the final waste classification prior to off-site disposal. The anticipated waste quantities should also be confirmed at that time and documented in the report.

The soils and backfill sands associated with the USTs have not been classified and this will need to occur during the removal process.

8.2 Preliminary Classification of Natural Soil

Based on the available results (including the PSI and DSI), and at the time of reporting, the alluvial silty clay in the vicinity of TP115 is assigned a preliminary classification of **General Solid Waste (non-putrescible)**, due to the elevated TRH concentrations detected at depth. JKE note that the TRH concentrations may potentially be attributable to organic polar compounds within the soil matrix which can cause interference during analysis, however further assessment would be required to confirm this.

Based on the available results, and at the time of reporting, JKE is of the opinion that the alluvial silty clay and silty sandy clay within the site (with the exception of the soil in the vicinity of TP115 and in the vicinity of the USTs) will likely meet the definition of VENM for off-site disposal or re-use purposes.

Further assessment is required to confirm these classifications prior to off-site disposal of the waste. The anticipated waste quantities should also be confirmed at that time and documented in the report.

9 DISCUSSION

9.1 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

9.1.1 Soil

9.1.1.1 Asbestos

Asbestos was not identified in or on soils during the DSI or PSI. The investigations identified shallow filling across the site, with some inclusions of building rubble including AC fragments, brick, ceramic and plastic. However, no FCF/ACM was visually identified in or on soils, and no asbestos was identified in the soil samples analysed by the laboratory.

On this basis, the potential for asbestos to be encountered in or on soils at concentrations that pose a healthrisk under the proposed land use scenario is considered to be low. Potential construction-phase risks associated with unexpected asbestos-related finds can be managed via the implementation of a suitable unexpected finds protocol.

9.1.1.2 Heavy Metals

All heavy metal results were below the relevant SAC and were not considered to pose a risk to receptors.

9.1.1.3 Hydrocarbons

A concentration of TRH F2 above the human health and ecological SAC was recorded in the surficial fill soils in TP118. Concentrations of TRH F3 above the ecological SAC were also recorded in the surficial fill soils in TP118 and the deeper alluvial silty clay soil in TP115. TP115 and TP118 were located in the north and northeast of the site as shown on Figure 3 attached in the appendices. There were no odours associated with any of these occurrences of TRH.

The source of the surficial TRH impacts in the vicinity of TP118 was considered likely associated with a surficial spill/release such as from lawn maintenance equipment (i.e. lawn mower, blower etc). TRH was not recorded above the PQL in the underlying natural soil sample, indicating the TRH impacts were likely confined to the surficial fill soils. TP118 was located in a grass-covered area and the elevated TRH F2 and F3 concentrations were recorded in the surficial soils. The grass cover in the vicinity of TP118 appeared healthy and well-maintained based on a cursory inspection. No visible obvious evidence of plant distress was noted. Based on the observed site conditions (vegetation cover and apparent healthy condition), JKE is of the opinion the TRH F2 and F3 in surficial fill in the vicinity of TP118 is unlikely to pose an unacceptable risk to ecological receptors.

From a human-health risk perspective, JKE note that the human-health SAC for TRH F2 (110mg/kg) is based on vapour intrusion assuming that a building is or will be at this location. It is noted that the HSL for public open space (i.e. open landscaped areas) is not limiting (i.e. no set limit), as there is not considered to be a risk of vapour intrusion and unacceptable exposure to vapours in the absence of buildings/structures. Based on the minor exceedance of the SAC, the current site configuration and the fact that surficial fill would likely be removed (for site preparation purposes) in the event that a building was constructed in this vicinity, JKE considered the TRH F2 in surficial fill in the vicinity of TP118 was unlikely to pose an unacceptable risk to human health.

TP115 is located in a grass-covered area and the elevated TRH F3 concentration was recorded within the underlying alluvial silty clay soil (1.1-1.3m). TRH was not recorded above the PQL in the overlying fill soil sample, indicating the TRH impacts were unlikely to be a result of surficial/top-down release. No potential sub-surface point sources of TRH contamination (such as USTs) were identified in the vicinity of TP115. On this basis, JKE were of the opinion that the TRH F3 concentration is likely associated, at least in part, with interference from organic polar compounds during analysis. However, further investigation would be required to confirm this. JKE note that the vegetation in the vicinity of TP115 (including grass cover, shrubbery and mature trees) appeared to be in good health based on a cursory inspection with no visible obvious evidence of plant distress noted. Based on the observed site conditions, JKE is of the opinion the TRH F3 in deeper alluvial silty clay soil in the vicinity of TP115 is unlikely to pose an unacceptable risk to ecological receptors.

During the PSI, a concentration of TRH F2 above the human health and ecological SAC was recorded in the surficial fill soils in BH7, located in the south-east of the site as shown on Figure 3 attached in the appendices. For the reasons above, the TRH F2 in surficial fill in the vicinity of BH7 was considered unlikely to pose an unacceptable risk to human health and/or ecological receptors.

JKE note that a hydrocarbon odour was encountered in the shallow fill soils in BH103, along with an elevated PID reading of greater than 25ppm. BH103 was targeted to the vicinity of the disused USTs. The odorous fill may be indicative of a historical leak/spill in this vicinity. Though the TRH and PAH results were below the PQL, given the proximity to the USTs, consideration should be given to localised remediation in this area. There is a potential for impacts to occur within the tank pit backfill sands.

9.1.1.4 Pesticides and PCBs

Dieldrin (an OCP compound) was recorded in the surficial fill soils in TP114, at a concentration approximately 20% of the human health SAC. TP114 was located in the south-west of the site, to the west of the staff accommodation building, as shown on the attached buildings. The source of the dieldrin is considered likely associated with historical pesticide application near the buildings.

JKE note that the concentration was well below the SAC and considering multiple lines of evidence, the reported dieldrin concentration is not considered to pose a risk to receptors. All other pesticide and PCB results were below the laboratory PQLs.

9.1.2 Groundwater

9.1.2.1 Heavy metals

Zinc concentrations above the ecological SAC were detected in all of the groundwater samples. Copper and nickel concentrations above the ecological SAC were also detected in the groundwater samples collected from MW1. MW1 was located in the south-east and down-gradient are of the site as shown on Figure 3 attached in the appendices.

The zinc results were relatively consistent between all of the groundwater samples. The copper and nickel concentrations in the sample collected from MW1 were notably higher than the other samples. The concentrations of copper, nickel and zinc recorded within the soil samples collected from these locations were generally consistent with the expected ambient conditions, indicating the soils at the site were unlikely to be the source of the heavy metals. On this basis, JKE consider the zinc impacts are likely a regional issue.

The occurrence of marginally elevated copper and nickel in MW1 is considered to be attributed to grey water impacts, most likely associated with a leaking sewer and the discharge of laundry water containing detergent. This is supported by the high EC in MW1 and the observations during development. We also note that the survey identified a service pit full of grey water located to the south of the main building and that the sewer ran adjacent to this service pit. The survey is attached in the appendices.

Based on the proximity of ecological receptors relevant to groundwater and the marginally elevated copper and nickel concentrations associated with MW1, it is our opinion that the elevated concentrations do not pose an unacceptable risk to ecological receptors.

All other heavy metal results were below the ecological SAC. All heavy metal results were below the recreational SAC.

9.1.2.2 Hydrocarbons

All hydrocarbon (BTEX/TRH and PAH) concentrations were below the SAC. All hydrocarbon results were below the respective laboratory PQLs.

The DSI did not identify groundwater impacts that were indicative of widespread TRH and/or BTEX contamination in the vicinity of the disused USTs.

9.1.2.3 Physical Parameters

The pH of the groundwater ranged from pH 6.5 to 7.1 and were within the ecological and recreational SAC ranges.

The EC results of the groundwater ranged from 1,500 μ S/cm to 16,000 μ S/cm. JKE note that the EC results for the groundwater sample collected from MW1 was approximately 5-10x greater than the remaining groundwater samples and this is likely to be attributed to the grey water impacts as discussed above.

9.2 Decision Statements

The decision statements are addressed below:

Are any results above the SAC?

Yes, as discussed in Section 7.

Do potential risks associated with contamination exist, and if so, what are they?

Immediate and unacceptable risks to human health and/or ecological receptors were not identified during the DSI. There is a potential for localised soil impacts to be associated with the UST, particularly in the tank pit backfill.

Is remediation required?

The DSI has not identified unacceptable risks that warrant remediation in our opinion. However, due to the sampling data gaps beneath buildings and due to the potential for localised impacts in the UST pit, we recommend that a RAP be prepared to provide a framework to manage the removal of the USTs and potential risks associated with contamination.

Is the site characterisation sufficient to provide adequate confidence in the above decisions?

Yes.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

JKE is of the opinion that the site can be made suitable subject to preparation and implementation of a RAP.

9.3 Data Gaps

An assessment of data gaps is provided in the following table:

Table 9-1: Data Gap Assessment

Data Gap	Assessment
Groundwater flow direction not confirmed.	Two disused USTs and a current back-up generator were identified in the south and south-east of the site. Groundwater samples were collected from monitoring wells targeting these locations which did not detect concentrations of TRH/BTEX above the PQLs. However, odorous fill soils were encountered in the vicinity of the USTs which may be indicative of a former leak/spill. JKE did not ascertain the contents (if any) of the USTs or whether they had been decommissioned. Due to the proximity of the existing buildings to the USTs, and the uncertainty relating to the groundwater flow direction, there is considered to be potential for a leak/spill to occur and potentially impact receptors.

Data Gap	Assessment		
	On this basis, the RAP is to include provisions for the removal and validation of the USTs, and any associated infrastructure and stained and/or odorous soils.		
Building footprints not assessed.	The sampling locations were positioned outside of the building footprints. The fill and soil conditions beneath the building footprints are currently unknown, though JKE is of the opinion that the soil contaminant conditions would likely be similar to the available data. However, asbestos impacts may be encountered and there is a potential that pesticide applications occurred beneath the buildings, given the detectable concentration of dieldrin in TP114. JKE understand that the existing buildings will likely be retained in the proposed development. In the event that the existing buildings are not retained, further investigation beneath the building footprints is recommended following demolition. Hence, provisions for additional testing are to be included in the RAP.		

10 CONCLUSIONS AND RECOMMENDATIONS

The investigation included a review of historical information and sampling from 32 additional locations. The site has historically been used for public recreation until circa 1960, and has been used for a hospital since.

The DSI identified TRHs in soil above the human health and ecological SAC. However, the SAC selected were conservative and the concentrations detected were not considered to pose an unacceptable risk to human health and ecological receptors in the context of the proposed development.

The DSI identified USTs and odorous fill soils which may potentially pose risk to receptors. The DSI has not identified unacceptable risks that warrant remediation in our opinion. However, due to the sampling data gaps beneath buildings and due to the potential for localised impacts in the UST pit, we recommend that a RAP be prepared to provide a framework to manage the removal of the USTs and potential risks associated with contamination.

Based on the findings of the investigation, JKE is of the opinion that the site is suitable for the proposed development described in Section 1.1. via implementation of a suitable RAP. The following is recommended:

- A RAP is to be prepared for the removal, remediation and validation of the USTs and associated infrastructure. The RAP is to include an unexpected finds protocol (UFP). Provisions are to be included within the RAP for additional investigation in the building footprints in the event that the current buildings are not retained, noting this would need to occur once access is available (i.e. following demolition); and
- Undertake a validation assessment documenting the works.

JKE consider that the report objectives outlined in Section 1.2 have been addressed.

11 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
 These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or land use. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures & Survey Plan

Report Figures

AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

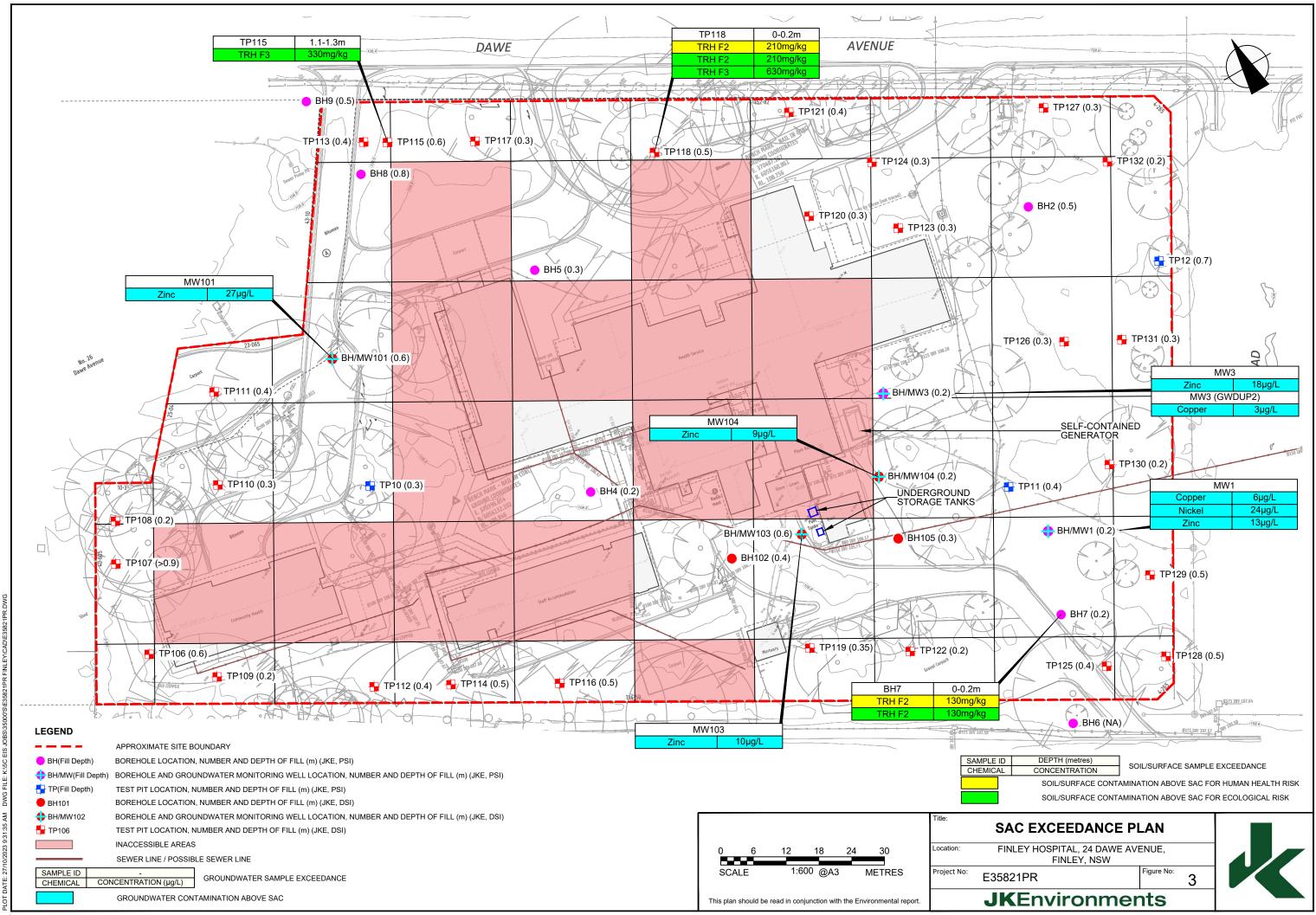
Title:

SITE LOCATION PLAN

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

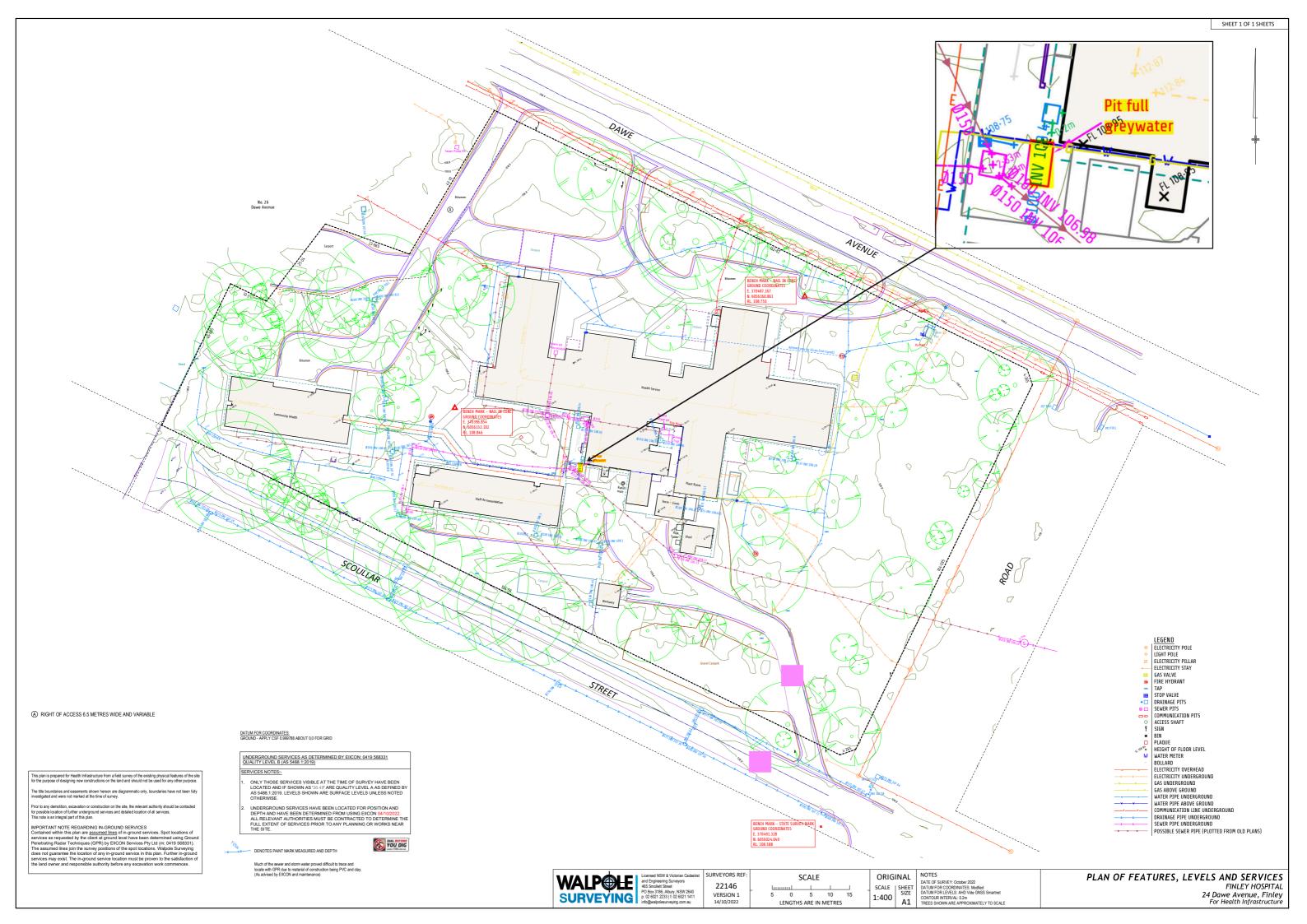
Project No: E35821PR

This plan should be read in conjunction with the Environmental report.


Title:

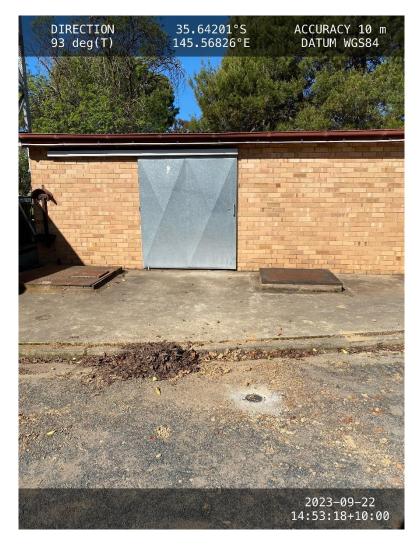
SITE LOCATION PLAN

Figure No:

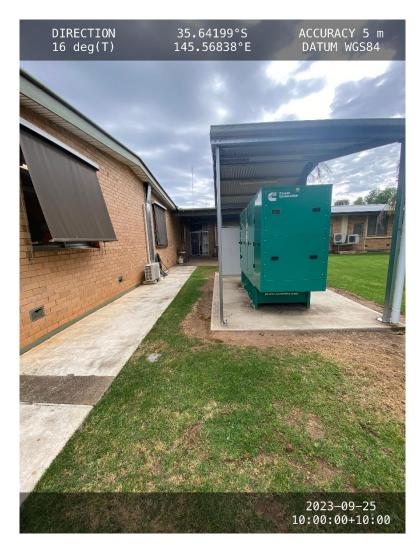

1

Survey Plan

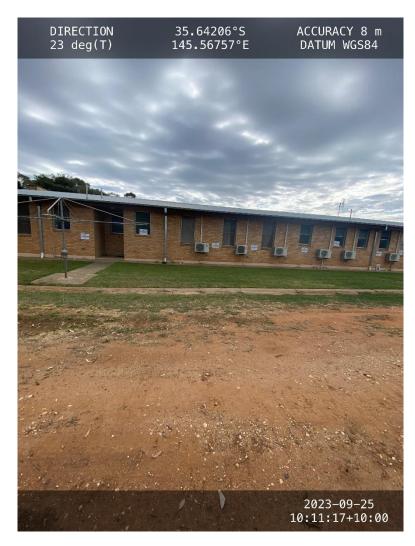
Appendix B: Selected Site Photographs



Photograph 1: MW103 installation



Photograph 2: UST access point



Photograph 3: MW103 and USTs

Photograph 4: Current back-up generator

Photograph 5: Staff accommodation building and access track

Photograph 6: General site condition

Appendix C: Laboratory Results Summary Tables

DSI Results Summary Tables

JKEnvironments

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration NL: Not Limiting ACM: Asbestos Containing Material NSL: No Set Limit

ADWG: AustralianDrinking Water Guidelines

AF: Asbestos Fines

OCP: Organochlorine Pesticides

OPP: Organophosphorus Pesticides

ANZG Australian and New Zealand Guidelines PAHs: Polycyclic Aromatic Hydrocarbons PCBs: Polychlorinated Biphenyls

CEC: Cation Exchange Capacity PQL: Practical Quantitation Limit CRC: Cooperative Research Centre RS: Rinsate Sample

CT: Contaminant Threshold RSL: Regional Screening Levels

ELS: Ecological Investigation Levels

ESLs: Ecological Screening Levels

SAC: Site Assessment Criteria

FA: Fibrous Asbestos SCC: Specific Contaminant Concentration

GIL: Groundwater Investigation Levels SSA: Site Specific Assessment

GSW: General Solid Waste SSHSLs: Site Specific Health Screening Levels

HILS: Health Investigation Levels

TB: Trip Blank

HSLs: Health Screening Levels TCLP: Toxicity Characteristics Leaching Procedure

HSL-SSA: Health Screening Level-SiteSpecific Assessment
 kg/L
 kilograms per litre
 TRH: Total Recoverable Hydrocarbons

NA: Not Analysed

NO: Not Calculated

UCL: Upper Level Confidence Limit on Mean Value

USEPA United States Environmental Protection Agency

NEPM: National Environmental Protection Measure **VOCC:** Volatile Organic Chlorinated Compounds

NHMRC: National Health and Medical Research Council **WHO:** World Health Organisation **%w/w:** weight per weight

Table Specific Explanations:

Parts per million

ppm:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE \$1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

						HEAVY I	METALS					PAHs			ORGANOCHI	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		
All data in mg/kg unles	s stated otherv	vise	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	Carcinogenic PAHs	НСВ	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Service	S		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Criteria	a (SAC)		100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH101	0.1-0.3	F: Silty Clay	13	<0.4	25	31	13	<0.1	18	55	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH101 - [LAB_DUP]	0.1-0.3	Laboratory Duplicate	12	<0.4	24	26	12	<0.1	13	36	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH101 - [LAB_TRIP]	0.1-0.3	laboratory Triplicate	8	<0.4	24	22	14	<0.1	14	40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH101	0.6-0.95	F: Silty Clay	5	<0.4	27	16	12	<0.1	21	25	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH102	0.02-0.2	F: Silty Clay	10	<0.4	16	16	9	<0.1	16	50	<0.05	<0.5	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	Not Detected
BH103 BH103	0.02-0.2	F: Silty Clay Silty Clay	7 5	<0.4	34 27	25 20	17 14	<0.1	20 17	39 32	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
BH104	0.0-0.33	F: Silty Clay	6	<0.4	22	31	23	0.1	11	96	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH104	0.6-0.95	Silty Clay	6	<0.4	27	22	14	<0.1	20	38	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH104	4.6-4.95	Silty Clay	<4	<0.4	27	16	27	<0.1	19	49	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH105	0.05-0.2	F: Silty Clay	6	<0.4	25	14	13	<0.1	14	30	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP106	0-0.2	F: Silty Sandy Clay	<4	<0.4	10	3	5	<0.1	2	7	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP107	0-0.2	F: Silty Clay	<4	<0.4	17	11	9	<0.1	9	23	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP107 - [LAB_DUP]	0-0.2	Laboratory Duplicate	<4	<0.4	13	9	7	<0.1	6	17	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
TP107 TP108	0.7-0.9	F: Silty Clay F: Silty Clay	8	<0.4	40 28	24 18	18 15	<0.1	23 17	41 35	<0.05 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA Not Detected
TP108	0-0.2	F: Silty Clay	5	<0.4	28	15	75	<0.1	17	78	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected Not Detected
TP109	0.7-0.9	Silty Clay	8	<0.4	32	21	17	<0.1	22	42	<0.05	<0.5	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	Not Detected NA
TP110	0-0.2	F: Silty Clay	8	<0.4	40	22	18	<0.1	26	36	<0.05	<0.5	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected
TP110	0.6-0.8	Silty Clay	7	<0.4	28	21	17	<0.1	17	47	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP111	0-0.2	F: Silty Clay	6	<0.4	25	14	11	<0.1	15	37	2	0.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP112	0-0.2	F: Silty Clay	6	<0.4	24	160	49	<0.1	19	120	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP113	0-0.2	F: Silty Clay	6	<0.4	30	18	18	<0.1	19	38	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP114	0-0.2	F: Silty Clay	10	<0.4	29	41	15	<0.1	17	38	<0.05	<0.5	<0.1	<0.1	<0.1	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP114 - [LAB_DUP] TP114	0-0.2	Laboratory Duplicate	NA 7	NA 10.4	NA 25	NA 21	NA 45	NA 10.1	NA 28	NA 25	NA 10.05	NA <0.5	<0.1 NA	<0.1 NA	<0.1	1.2 NA	<0.1 NA	<0.1	<0.1	NA NA	NA NA	NA NA
TP114 TP115	0.8-1	Silty Clay F: Silty Clay	6	<0.4	35 26	18	15 23	<0.1	16	35 43	<0.05 <0.05	<0.5	<0.1	<0.1	NA <0.1	<0.1	<0.1	NA <0.1	NA <0.1	NA <0.1	<0.1	Not Detected
TP115	1.1-1.3	Silty Clay	9	<0.4	28	27	16	<0.1	20	69	<0.05	<0.5	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
TP116	0-0.2	F: Silty Clay	12	<0.4	26	15	17	<0.1	15	33	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP116 - [LAB_DUP]	0-0.2	Laboratory Duplicate	12	<0.4	25	17	16	<0.1	16	36	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP117	0-0.2	F: Silty Clay	<4	<0.4	14	11	12	<0.1	7	35	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP118	0-0.2	F: Silty Clay	<4	<0.4	12	19	12	<0.1	6	32	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP118	1-1.2	Silty Clay	9	<0.4	34	21	17	<0.1	22	44	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP119	0-0.2	F: Silty Clay	8	<0.4	30	20	21	<0.1	19	72	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP119	0.7-0.9	Silty Clay	9	<0.4	39	24	17	<0.1	22 9	43	<0.05	<0.5	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA <0.1	NA Nat Datastad
TP120 TP120 - [LAB_DUP]	0-0.2	F: Silty Clay Laboratory Duplicate	4	<0.4	17 15	15 13	15 14	0.5	7	65 57	<0.05 <0.05	<0.5 <0.5	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1	Not Detected NA
TP120	0.6-0.8	Silty Clay	8	<0.4	33	21	16	<0.1	21	39	<0.05	<0.5	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
TP121	0-0.2	F: Silty Clay	5	<0.4	21	35	17	<0.1	11	47	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH122	0.05-0.2	F: Silty Clay	8	<0.4	37	21	18	<0.1	29	44	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP123	0-0.2	F: Silty Clayey Sand	<4	<0.4	10	3	5	<0.1	4	16	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP123	0.6-0.8	Silty Sandy Clay	4	<0.4	21	12	11	<0.1	14	28	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP124	0-0.2	F: Silty Clay	<4	<0.4	17	12	8	<0.1	5	30	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP125	0-0.2	F: Silty Clay	5 7	<0.4	25	14 22	15	<0.1	17 24	28	<0.05	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected
TP125 TP126	0.7-09	Silty Clay F: Silty Clay	6	<0.4	36 27	14	19 15	<0.1	14	43 24	<0.05 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA Not Detected
TP126	0-0.2	F: Silty Clay	5	<0.4	22	13	16	<0.1	10	26	<0.05	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected Not Detected
TP127	0.6-0.8	Silty Clay	8	<0.4	35	22	16	<0.1	21	40	<0.05	<0.5	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
TP128	0-0.2	F: Silty Clay	7	<0.4	36	18	15	<0.1	20	34	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP128 - [LAB_DUP]	0-0.2	Laboratory Duplicate	8	<0.4	37	19	16	<0.1	25	35	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP129	0-0.2	F: Silty Clay	6	<0.4	19	14	17	<0.1	14	33	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP130	0-0.2	F: Silty Clay	5	<0.4	26	15	15	<0.1	16	23	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP130	0.5-0.7	Silty Clay	7	<0.4	32 24	21 12	16 12	<0.1	20 9	36 19	<0.05 <0.05	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
TP131 TP132	0-0.2	F: Silty Clay F: Silty Clay	4	<0.4	19	10	12	<0.1	10	18	<0.05	<0.5	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected Not Detected
SDUP1	0-0.2	Duplicate of TP128	7	<0.4	31	18	16	<0.1	21	29	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
SDUP1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	8	<0.4	34	19	18	<0.1	24	33	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP2	0-0.2	Duplicate of TP129	6	<0.4	19	14	16	<0.1	14	32	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP3	0-0.2	Duplicate of TP125	5	<0.4	25	15	16	<0.1	17	30	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP4	0-0.2	Duplicate of TP119	6	<0.4	24	16	17	<0.1	15	60	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP5	0-0.2	Duplicate of TP116	7	<0.4	24	13	11	<0.1	13	27	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA
SDUP5 - [LAB_DUP]	0-0.2	Laboratory Duplicate	6	<0.4	23	13	13	<0.1	14	26	NA 10.05	NA 10.5	NA 10.1	NA 10.1	NA 10.1	NA 0.4	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA NA
SDUP6	0-0.2	Duplicate of TP114	8	<0.4	24	14	10	<0.1	15	34	<0.05	<0.5	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
Total Number of Sam	nples		62	62	62	62	62	62	62	62	60	60	25	25	25	25	25	25	25	24	24	32
Maximum Value			13	<pql< td=""><td>40</td><td>160</td><td>75</td><td>0.5</td><td>29</td><td>120</td><td>2</td><td>0.6</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	40	160	75	0.5	29	120	2	0.6	<pql< td=""><td><pql< td=""><td><pql< td=""><td>1.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>1.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>1.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	1.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S2 SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Measurem
QL - Envirolab Service					25	50	0.2	0.5	1	1	1	ppm
IEPM 2013 HSL Land L							HSL-A/B: LC	W/HIGH DENSITY	RESIDENTIAL		т —	<u> </u>
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH101	0.1-0.3	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.9
BH101 - [LAB_DUP]	0.1-0.3	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH101	0.6-0.95	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.9
BH102	0.02-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.7
BH103 BH103	0.02-0.2 0.6-0.95	F: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	25.2 2.3
BH104	0.0-0.93	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	4
BH104	0.6-0.95	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	14.3
BH104	4.6-4.95	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.3
BH105	0.05-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.9
TP106	0-0.2	F: Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.7
TP107	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.7
TP107 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
TP107	0.7-0.9	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
TP108	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
TP109	0-0.2	F: Silty Clay	0m to <1m	Sand	<25 <25	<50 <50	<0.2	<0.5	<1 <1	<1	<1	0.9 1.5
TP109 TP110	0.7-0.9 0-0.2	Silty Clay F: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1 <1	0.8
TP110	0.6-0.8	Silty Clay	0m to <1m	Sand	<25	<50 <50	<0.2	<0.5	<1	<1	<1	0.8
TP111	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP112	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.8
TP113	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.8
TP114	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.1
TP114	0.8-1	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.8
TP115	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.9
TP115	1.1-1.3	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.8
TP116	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.3
TP116 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
TP117	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP118	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	210	<0.2	<0.5	<1	<1	<1	0.1
TP118	1-1.2	Silty Clay	0m to <1m	Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	0.4
TP119 TP119	0-0.2 0.7-0.9	F: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP120	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP120 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
TP120	0.6-0.8	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP121	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
BH122	0.05-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.9
TP123	0-0.2	F: Silty Clayey Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP123	0.6-0.8	Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP124	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP125	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP125	0.7-09	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP126 TP127	0-0.2 0-0.2	F: Silty Clay	0m to <1m	Sand	<25 <25	<50 <50	<0.2	<0.5 <0.5	<1 <1	<1	<1	0.3
TP127	0.6-0.8	F: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5	<1	<1 <1	<1 <1	0.3
TP127	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP128 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
TP129	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP130	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP130	0.5-0.7	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
TP131	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP132	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
SDUP1	0-0.2	Duplicate of TP128	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA NA
SDUP2	0-0.2	Duplicate of TP129	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA NA
SDUP3 SDUP4	0-0.2 0-0.2	Duplicate of TP125 Duplicate of TP119	0m to <1m	Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	NA NA
SDUP4 SDUP5	0-0.2	Duplicate of TP119 Duplicate of TP116	0m to <1m 0m to <1m	Sand Sand	<25	<50 <50	<0.2	<0.5	<1	<1	<1	NA NA
SDUP6	0-0.2	Duplicate of TP114	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA NA
55 5. 5	0 0.2	prieste or 11 ##4		30	-20	-50	-012	-0.0			1	147
Total Number of Sam	nples				60	60	60	60	60	60	60	48
Maximum Value					<pql< td=""><td>210</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	210	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<>	<pql< td=""><td>25.2</td></pql<>	25.2

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below the Concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below the Concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below the Concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below the Concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below the Concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below the Concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below the Concentration above the Concentration above

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH101	0.1-0.3	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101 - [LAB DUP]	0.1-0.3	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101	0.6-0.95	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH102	0.02-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.02-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.6-0.95			Sand	45	110	0.5	160	55	40	3
		Silty Clay	0m to <1m								3
BH104	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	-
BH104	0.6-0.95	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104	4.6-4.95	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH105	0.05-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP106	0-0.2	F: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP107	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP107 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP107	0.7-0.9	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP108	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP109	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP109	0.7-0.9	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP110	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP110	0.6-0.8	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP111	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP112	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP112	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP114	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
											3
TP114	0.8-1	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	
TP115	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP115	1.1-1.3	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP116	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP116 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP117	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP118	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP118	1-1.2	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP119	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP119	0.7-0.9	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP120	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP120 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP120	0.6-0.8	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP121	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH122	0.05-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP123	0-0.2	F: Silty Clayey Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP123	0.6-0.8	Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP124	0.0-0.8		0m to <1m	Sand	45	110	0.5	160	55	40	3
		F: Silty Clay									
TP125	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP125	0.7-09	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	
TP126	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP127	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP127	0.6-0.8	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP128	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP128 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP129	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP130	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP130	0.5-0.7	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP131	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP132	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP1	0-0.2	Duplicate of TP128	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP2	0-0.2	Duplicate of TP129	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP3	0-0.2	Duplicate of TP125	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP4	0-0.2	Duplicate of TP119	0m to <1m	Sand	45	110	0.5	160	55	40	3
					45	110		160	55	40	3
SDUP5	0-0.2	Duplicate of TP116	0m to <1m	Sand			0.5				
SDUP6	0-0.2	Duplicate of TP114	0m to <1m	Sand	45	110	0.5	160	55	40	3

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4
QL - Envirolab Serv NEPM 2013 Land U			25 RF	50 SIDENTIAL, PARKLAND	100 & DUBLIC OPEN SP	100
Sample Reference		Soil Texture	KE.	DENTIAL, FARREARD	a robbic or bit or	HUL
BH101 BH101 - [LAB_DUP]	0.1-0.3 0.1-0.3	Coarse	<25 <25	<50 <50	<100 <100	<100 <100
BH101	0.6-0.95	Coarse Coarse	<25	<50	<100	<100
BH102	0.02-0.2	Coarse	<25	<50	250	290
BH103	0.02-0.2	Coarse	<25	<50	<100	<100
BH103	0.6-0.95	Coarse	<25	<50	<100	<100
BH104	0-0.2	Coarse	<25	<50	<100	<100
BH104	0.6-0.95	Coarse	<25	<50	<100	<100
BH104	4.6-4.95	Coarse	<25	<50	<100	<100
BH105 TP106	0.05-0.2 0-0.2	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP100	0-0.2	Coarse	<25	<50	<100	<100
TP107 - [LAB_DUP]	0-0.2	Coarse	<25	<50	<100	<100
TP107	0.7-0.9	Coarse	<25	<50	<100	<100
TP108	0-0.2	Coarse	<25	<50	<100	<100
TP109	0-0.2	Coarse	<25	<50	<100	<100
TP109	0.7-0.9	Coarse	<25	<50	<100	<100
TP110	0-0.2	Coarse	<25	<50	<100	<100
TP110 TP111	0.6-0.8 0-0.2	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP111	0-0.2	Coarse	<25	<50	<100	<100
TP113	0-0.2	Coarse	<25	<50	<100	<100
TP114	0-0.2	Coarse	<25	<50	<100	<100
TP114	0.8-1	Coarse	<25	<50	<100	<100
TP115	0-0.2	Coarse	<25	<50	<100	<100
TP115	1.1-1.3	Coarse	<25	<50	330	260
TP116	0-0.2	Coarse	<25	<50	<100	<100
TP116 - [LAB_DUP]	0-0.2	Coarse	<25	<50	<100	<100
TP117 TP118	0-0.2 0-0.2	Coarse Coarse	<25 <25	<50 210	<100 630	<100 230
TP118	1-1.2	Coarse	<25	<50	<100	<100
TP119	0-0.2	Coarse	<25	<50	<100	<100
TP119	0.7-0.9	Coarse	<25	<50	<100	<100
TP120	0-0.2	Coarse	<25	<50	<100	<100
TP120 - [LAB_DUP]	0-0.2	Coarse	<25	<50	<100	<100
TP120	0.6-0.8	Coarse	<25	<50	<100	<100
TP121	0-0.2	Coarse	<25	<50	<100	<100
BH122 TP123	0.05-0.2 0-0.2	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP123	0.6-0.8	Coarse	<25	<50	<100	<100
TP124	0-0.2	Coarse	<25	<50	<100	<100
TP125	0-0.2	Coarse	<25	<50	<100	<100
TP125	0.7-09	Coarse	<25	<50	<100	<100
TP126	0-0.2	Coarse	<25	<50	<100	<100
TP127	0-0.2	Coarse	<25	<50	<100	<100
TP127	0.6-0.8	Coarse	<25	<50	<100	<100
TP128 [P128 - [LAB_DUP]	0-0.2 0-0.2	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP129	0-0.2	Coarse	<25	<50	150	<100
TP130	0-0.2	Coarse	<25	<50	<100	<100
TP130	0.5-0.7	Coarse	<25	<50	<100	<100
TP131	0-0.2	Coarse	<25	<50	<100	<100
TP132	0-0.2	Coarse	<25	<50	<100	<100
SDUP1	0-0.2	Coarse	<25	<50	<100	<100
SDUP1 -	0-0.2	Coarse	<25	<50	<100	<100
SDUP2 SDUP3	0-0.2 0-0.2	Coarse	<25 <25	<50 <50	150 <100	<100 <100
SDUP3 SDUP4	0-0.2	Coarse Coarse	<25	<50 <50	<100	<100
SDUP5	0-0.2	Coarse	<25	<50	<100	<100
SDUP6	0-0.2	Coarse	<25	<50	<100	<100
otal Number of Sa	mples		60	60	60	60
Maximum Value			<pql< td=""><td>210</td><td>630</td><td>290</td></pql<>	210	630	290

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
BH101	0.1-0.3	Coarse	700	1000	2500	10000
BH101 - [LAB_DUP]	0.1-0.3	Coarse	700	1000	2500	10000
BH101	0.6-0.95	Coarse	700	1000	2500	10000
BH102	0.02-0.2	Coarse	700	1000	2500	10000
BH103	0.02-0.2	Coarse	700	1000	2500	10000
BH103	0.6-0.95	Coarse	700	1000	2500	10000
BH104	0-0.2	Coarse	700	1000	2500	10000
BH104	0.6-0.95	Coarse	700	1000	2500	10000
BH104	4.6-4.95	Coarse	700	1000	2500	10000
BH105	0.05-0.2	Coarse	700	1000	2500	10000
TP106	0-0.2	Coarse	700	1000	2500	10000
TP107	0-0.2	Coarse	700	1000	2500	10000
TP107 - [LAB_DUP]	0-0.2	Coarse	700	1000	2500	10000
TP107	0.7-0.9	Coarse	700	1000	2500	10000
TP108	0-0.2	Coarse	700	1000	2500	10000
TP109	0-0.2	Coarse	700	1000	2500	10000
TP109	0.7-0.9	Coarse	700	1000	2500	10000
TP110	0-0.2	Coarse	700	1000	2500	10000
TP110	0.6-0.8	Coarse	700	1000	2500	10000
TP110	0-0.2	Coarse	700	1000	2500	10000
TP111	0-0.2	Coarse	700	1000	2500	10000
TP112	0-0.2	Coarse	700	1000	2500	10000
			700			
TP114	0-0.2	Coarse		1000	2500	10000
TP114	0.8-1	Coarse	700	1000	2500	10000
TP115	0-0.2	Coarse	700	1000	2500	10000
TP115	1.1-1.3	Coarse	700	1000	2500	10000
TP116	0-0.2	Coarse	700	1000	2500	10000
TP116 - [LAB_DUP]	0-0.2	Coarse	700	1000	2500	10000
TP117	0-0.2	Coarse	700	1000	2500	10000
TP118	0-0.2	Coarse	700	1000	2500	10000
TP118	1-1.2	Coarse	700	1000	2500	10000
TP119	0-0.2	Coarse	700	1000	2500	10000
TP119	0.7-0.9	Coarse	700	1000	2500	10000
TP120	0-0.2	Coarse	700	1000	2500	10000
TP120 - [LAB_DUP]	0-0.2	Coarse	700	1000	2500	10000
TP120	0.6-0.8	Coarse	700	1000	2500	10000
TP121	0-0.2	Coarse	700	1000	2500	10000
BH122	0.05-0.2	Coarse	700	1000	2500	10000
TP123	0-0.2	Coarse	700	1000	2500	10000
TP123	0.6-0.8	Coarse	700	1000	2500	10000
TP124	0-0.2	Coarse	700	1000	2500	10000
TP125	0-0.2	Coarse	700	1000	2500	10000
TP125	0.7-09	Coarse	700	1000	2500	10000
TP126	0-0.2	Coarse	700	1000	2500	10000
TP127	0-0.2	Coarse	700	1000	2500	10000
TP127	0.6-0.8	Coarse	700	1000	2500	10000
TP128	0-0.2	Coarse	700	1000	2500	10000
TP128 - [LAB_DUP]	0-0.2	Coarse	700	1000	2500	10000
TP129	0-0.2	Coarse	700	1000	2500	10000
TP130	0-0.2	Coarse	700	1000	2500	10000
TP130	0.5-0.7	Coarse	700	1000	2500	10000
TP131	0-0.2	Coarse	700	1000	2500	10000
TP132	0-0.2	Coarse	700	1000	2500	10000
SDUP1	0-0.2	Coarse	700	1000	2500	10000
SDUP1 -	0-0.2	Coarse	700	1000	2500	10000
SDUP2	0-0.2	Coarse	700	1000	2500	10000
SDUP3	0-0.2	Coarse	700	1000	2500	10000
SDUP4	0-0.2	Coarse	700	1000	2500	10000
SDUP5	0-0.2	Coarse	700	1000	2500	10000
SDUP6	0-0.2	Coarse	700	1000	2500	10000

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contac	ct Criteria	4,400	3,300	4,500	6,300	100	14,000	4,500	12,000	1,400	
Site Use				RESIDE	NTIAL WITH AC	CESSIBLE SOIL-	DIRECT SOIL CO	NTACT			
Sample Reference	Sample Depth										
BH101	0.1-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
BH101 - [LAB_DUP]	0.1-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH101	0.6-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
BH102	0.02-0.2	<25	<50	250	290	<0.2	<0.5	<1	<1	<1	1.7
BH103	0.02-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	25.2
BH103	0.6-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.3
BH104	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	4
BH104	0.6-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	14.3
BH104	4.6-4.95	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3
BH105	0.05-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
TP106	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.7
TP107	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.7
TP107 - [LAB DUP]	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP107		<25	<50			<0.2		<1		<1	0.5
TP107	0.7-0.9	<25	<50 <50	<100 <100	<100 <100	<0.2	<0.5 <0.5	<1	<1 <1	<1	0.5
TP108	0-0.2										
	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
TP109	0.7-0.9	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.5
TP110	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
TP110	0.6-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP111	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.7
TP112	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
TP113	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
TP114	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.1
TP114	0.8-1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
TP115	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
TP115	1.1-1.3	<25	<50	330	260	<0.2	<0.5	<1	<1	<1	0.8
TP116	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3
TP116 - [LAB_DUP]	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP117	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP118	0-0.2	<25	210	630	230	<0.2	<0.5	<1	<1	<1	0.1
TP118	1-1.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP119	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
TP119	0.7-0.9	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP120	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP120 - [LAB DUP]	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP120	0.6-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP121	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
BH122	0.05-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
TP123	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP123	0.6-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP124		<25	<50	<100			<0.5	<1	<1	<1	0.4
TP124 TP125	0-0.2				<100 <100	<0.2					
	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP125	0.7-09	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP126	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP127	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP127	0.6-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP128	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
TP128 - [LAB_DUP]	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP129	0-0.2	<25	<50	150	<100	<0.2	<0.5	<1	<1	<1	0.3
TP130	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP130	0.5-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
TP131	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP132	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
SDUP1	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP1 - [LAB_DUP]	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP2	0-0.2	<25	<50	150	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP3	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP4	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP5	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP6	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
35010	U-U.Z	\4J	\30	×100	×100	NU.Z	\U.J	-/1	~1	- 1	INM
Total Number of Sampl	05	60	60	60	60	60	60	60	60	60	48
Maximum Value	C3										
iviaximum value		<pql< td=""><td>210</td><td>630</td><td>290</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	210	630	290	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>25.2</td></pql<></td></pql<>	<pql< td=""><td>25.2</td></pql<>	25.2

Concentration above the SAC Concentration above the PQL VALUE Bold

TABLE SS
ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS
HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

							FIEL	D DATA			1			1				LABORATORY	DATA	I					
Date Sampled	Sample reference	Sample Depth	Visible ACM in top 100mm	Approx. Volume of Soil (L)	Soil Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)	Mass ACM <7mm (g)	Mass Asbestos in ACM <7mm (g)		Mass FA (g)	Mass from Asbestos FA (g) (%	os m Lab in Report I] Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	ACM >7mm Estimation %(w/w)	FA and A Estimation %(w/w)
SAC	•		No					0.01			0.001													0.01	0.001
19/09/2023	BH101	0.1-0.2	No	2	2,010	No ACM observed			No ACM <7mm observed			No FA observed		334243	BH101	0.1-0.3	213.11	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
19/09/2023	BH101	0.2-0.6	No	2	3,170	No ACM observed			No ACM <7mm observed			No FA observed						-							
19/09/2023		0.6-1	No	5	-	No ACM observed			No ACM <7mm observed			No FA observed						-							
19/09/2023		0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243	BH102	0.02-0.2	636.48	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
19/09/2023 19/09/2023	BH102 BH103	0.1-0.4	No No	10 7	-	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed		334243	BH103	0.02-0.2	535.01	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
19/09/2023	-	0.1-0.6	No	-	-	No ACM observed			No ACM <7mm observed			No FA observed		334243	BH103	0.02-0.2		No aspestos detected at reporting innit of 0.1g/kg. Organic hores detected							~0.001
19/09/2023		0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243	BH104	0-0.2	850.81	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
19/09/2023		0.05-0.3	No	2	3,010	No ACM observed			No ACM <7mm observed			No FA observed		334243	BH105	0.05-0.2		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
21/09/2023	TP106	0-0.1	No	10	14,120	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP106	0-0.2	861.37	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023	TP106	0.1-0.6	No	10	15,010	No ACM observed			No ACM <7mm observed			No FA observed													
21/09/2023	TP107	0-0.1	No	10	12,610	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP107	0-0.2	816.06	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023		0.1-0.4	No		-	No ACM observed			No ACM <7mm observed			No FA observed						-							
21/09/2023		0-0.1	No	-	-	No ACM observed			No ACM <7mm observed			No FA observed	-	334243	TP108	0-0.2	701.53	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023	TP109 TP110	0-0.1	No No		-	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed	-	334243	TP109 TP110	0-0.2	840.93 568.92	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected No asbestos detected	<0.1	No visible asbestos detected No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023	TP110	0.1-0.3	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243		0-0.2	306.92	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No aspestos detected		NO VISIBLE ASDESIOS DETECTED				<0.001
21/09/2023	TP111	0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP111	0-0.2	520.62	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.001
21/09/2023		0.1-0.4	No			No ACM observed			No ACM <7mm observed			No FA observed					-								-
21/09/2023	TP112	0-0.1	No	10	12,120	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP112	0-0.2	518.89	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023	TP112	0.1-0.4	No	10	14,010	No ACM observed			No ACM <7mm observed			No FA observed						-							
22/09/2023	TP113	0-0.1	No	10	13,890	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP113	0-0.2	578.14	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023	TP114	0-0.1	No	10	13,810	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP114	0-0.2	598.55	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023	TP114	0.1-0.5	No		14,330	No ACM observed			No ACM <7mm observed			No FA observed						-							
21/09/2023	TP115	0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP115	0-0.2	620.91	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023		0.1-0.6	No		-	No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed	-	334243	TP116	0.02	559.62	No achortor detected at reporting limit of 0.1g/kg: Organic fibrer detected	No achostos dotostod	<0.1	No visible asbestos detected			<0.01	<0.001
21/09/2023	TP116 TP116	0-0.1	No No	-	-	No ACM observed No ACM observed			No ACM <7mm observed			No FA observed		334243	11110	0-0.2	559.02	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	NO VISIBLE ASDESTOS DETECTED			<0.01	<0.001
21/09/2023		0-0.1	No		,	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP117	0-0.2	667.34	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
21/09/2023		0.1-0.3	No	10	14,010	No ACM observed			No ACM <7mm observed			No FA observed						-							
22/09/2023	TP118	0-0.1	No	10	12,850	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP118	0-0.2	662.68	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
22/09/2023	TP118	0.1-0.5	No	10	12,990	No ACM observed			No ACM <7mm observed			No FA observed													
21/09/2023	TP119	0-0.1	No	10	11,010	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP119	0-0.2	724.36	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023		0.1-0.35	No	10	12,110	No ACM observed			No ACM <7mm observed			No FA observed					-								
22/09/2023		0-0.1	No			No ACM observed			No ACM <7mm observed			No FA observed		334243	TP120	0-0.2	655.12	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
22/09/2023		0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed	-	334243	TP121	0-0.2	374.6	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
22/09/2023 19/09/2023		0.1-0.4	No No		-	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed		334243	BH122	0.05-0.2	456.14	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
22/09/2023		0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP123	0-0.2	842.12	No asbestos detected at reporting limit of 0.1g/kg. Organic libres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.001
22/09/2023		0-0.1	No			No ACM observed			No ACM <7mm observed			No FA observed		334243	TP124	0-0.2	578.42	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
22/09/2023	TP124	0.1-0.3	No	10	14,950	No ACM observed			No ACM <7mm observed			No FA observed						-							
21/09/2023	TP125	0-0.1	No	10	10,910	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP125	0-0.2	724.53	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023	TP125	0.1-0.4	No	10	13,100	No ACM observed			No ACM <7mm observed			No FA observed						-							
22/09/2023	TP126	0-0.1	No	10	11,900	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP126	0-0.2	634.33	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
22/09/2023	TP126	0.1-0.3	No	10	12,150	No ACM observed			No ACM <7mm observed			No FA observed													
22/09/2023		0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP127	0-0.2	671.68	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
22/09/2023		0.1-0.3	No		-	No ACM observed			No ACM <7mm observed			No FA observed		224242	TD120	0.02	 E46 27	No apportunt detected at reporting limit of 0.1 a/limit Occasion Shared	No achostos dotostod		No vicible ashasts =			 <0.01	
21/09/2023		0-0.1	No No		-	No ACM observed			No ACM <7mm observed			No FA observed	-	334243	TP128	0-0.2	546.27	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
21/09/2023		0.1-0.4	No		-	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed		334243	TP129	0-0.2	481.2	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-		<0.01	<0.001
21/09/2023		0.1-0.5	No		-	No ACM observed			No ACM <7mm observed			No FA observed													
22/09/2023		0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed		334243	TP130	0-0.2	629.12	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
22/09/2023		0-0.1	No		-	No ACM observed			No ACM <7mm observed			No FA observed	-	334243	TP131	0-0.2	716.72	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
22/09/2023	TP131	0.1-0.3	No	10	14,010	No ACM observed			No ACM <7mm observed			No FA observed						-							
22/09/2023	TP132	0-0.1	No	10	14.500	No ACM observed			No ACM <7mm observed			No FA observed	_ T.	334243	TP132	0-0.2	834.04	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected		_	<0.01	<0.001

oncentration above the SAC VALUE

TABLE S6
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLS
All data in mg/kg unless stated otherwise

Land Use Category												URBAN RESIDE	NTIAL AND PUBL		CE								
									AGED HEAV	/Y METALS-EILs			EII	_S					ESLs				1
				pH	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzen	e Total Xylenes	B(a)P
PQL - Envirolab Services				-	1		4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Cor	ncentration (A	BC)		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH101	0.1-0.3	F: Silty Clay	Coarse	8.5	11.5	37	13	25	31	13	18	55	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH101 - [LAB_DUP]	0.1-0.3	Laboratory Duplicate	Coarse	8.5	11.5	37	12	24	26	12	13	36	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH101 - [LAB_TRIP] BH101	0.1-0.3	laboratory Triplicate	Coarse	8.5 8.5	11.5 11.5	37 37	- 8 - 5	24 27	22 16	14 12	14 21	40 25	NA <1	NA NA	NA <25	NA <50	NA -100	NA <100	NA <0.2	NA <0.5	NA <1	NA <1	NA <0.05
BH101	0.6-0.95 0.02-0.2	F: Silty Clay F: Silty Clay	Coarse Coarse	8.5	11.5	37	10	16	16	9	16	50	<1	NA NA	<25	<50	<100 250	290	<0.2	<0.5	<1	<1	<0.05
BH103	0.02-0.2	F: Silty Clay	Coarse	8.5	11.5	37	7	34	25	17	20	39	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH103	0.6-0.95	Silty Clay	Coarse	8.5	11.5	37	5	27	20	14	17	32	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH104	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	6	22	31	23	11	96	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH104	0.6-0.95	Silty Clay	Coarse	8.5	11.5	37	6	27	22	14	20	38	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH104 BH105	4.6-4.95 0.05-0.2	Silty Clay	Coarse Coarse	8.5 8.5	11.5	37 37	<4	27 25	16 14	27 13	19 14	49 30	<1 <1	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	<0.05 <0.05
TP106	0-0.2	F: Silty Clay F: Silty Sandy Clay	Coarse	8.5	11.5	37	<4	10	3	5	2	7	<1	NA NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1 <1	<0.05
TP107	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	<4	17	11	9	9	23	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP107 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	<4	13	9	7	6	17	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP107	0.7-0.9	F: Silty Clay	Coarse	8.5	11.5	37	8	40	24	18	23	41	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP108	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	6	28	18	15	17	35	<1	NA r0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP109 TP109	0-0.2 0.7-0.9	F: Silty Clay Silty Clay	Coarse Coarse	8.5 8.5	11.5 11.5	37 37	8	32	15 21	75 17	12 22	78 42	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<0.05 <0.05
TP110	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	8	40	22	18	26	36	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP110	0.6-0.8	Silty Clay	Coarse	8.5	11.5	37	7	28	21	17	17	47	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
TP111	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	6	25	14	11	15	37	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.4
TP112	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	6	24	160	49	19	120	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP113	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	6	30	18	18	19	38	<1	NA r0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP114 TP114 - [LAB_DUP]	0-0.2 0-0.2	F: Silty Clay Laboratory Duplicate	Coarse Coarse	8.5 8.5	11.5	37 37	10 NA	29 NA	41 NA	15 NA	NA NA	38 NA	<1 NA	<0.1 <0.1	<25 NA	<50 NA	<100 NA	<100 NA	<0.2 NA	<0.5 NA	<1 NA	<1 NA	<0.05 NA
TP114	0.8-1	Silty Clay	Coarse	8.5	11.5	37	7	35	21	15	28	35	<1	NA.	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP115	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	6	26	18	23	16	43	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP115	1.1-1.3	Silty Clay	Coarse	8.5	11.5	37	9	28	27	16	20	69	<1	NA	<25	<50	330	260	<0.2	<0.5	<1	<1	<0.05
TP116	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	12	26	15	17	15	33	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP116 - [LAB_DUP] TP117	0-0.2 0-0.2	Laboratory Duplicate F: Silty Clay	Coarse	8.5 8.5	11.5 11.5	37 37	12 <4	25 14	17 11	16 12	16 7	36 35	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<0.05 <0.05
TP117	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	<4	12	19	12	6	32	<1	<0.1	<25	210	630	230	<0.2	<0.5	<1	<1	<0.05
TP118	1-1.2	Silty Clay	Coarse	8.5	11.5	37	9	34	21	17	22	44	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP119	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	8	30	20	21	19	72	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
TP119	0.7-0.9	Silty Clay	Coarse	8.5	11.5	37	9	39	24	17	22	43	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
TP120	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	4	17	15	15	9	65	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP120 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	4	15	13	14	7	57	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP120 TP121	0.6-0.8 0-0.2	Silty Clay F: Silty Clay	Coarse Coarse	8.5 8.5	11.5 11.5	37 37	8	33 21	21 35	16 17	21 11	39 47	<1 <1	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05
BH122	0.05-0.2	F: Silty Clay	Coarse	8.5	11.5	37	8	37	21	18	29	44	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP123	0-0.2	F: Silty Clayey Sand	Coarse	8.5	11.5	37	<4	10	3	5	4	16	<1	< 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
TP123	0.6-0.8	Silty Sandy Clay	Coarse	8.5	11.5	37	4	21	12	11	14	28	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP124	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	<4	17	12	8	5	30	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP125	0-0.2 0.7-09	F: Silty Clay Silty Clay	Coarse	8.5 8.5	11.5	37 37	7	25 36	14 22	15 19	17 24	28 43	<1	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<0.05 <0.05
TP126	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	6	27	14	15	14	24	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP127	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	5	22	13	16	10	26	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP127	0.6-0.8	Silty Clay	Coarse	8.5	11.5	37	8	35	22	16	21	40	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
TP128	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	7	36	18	15	20	34	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP128 - [LAB_DUP] TP129	0-0.2 0-0.2	Laboratory Duplicate F: Silty Clay	Coarse	8.5 8.5	11.5 11.5	37 37	8	37 19	19 14	16 17	25 14	35 33	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 150	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<0.05 <0.05
TP129	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	5	26	15	17	16	23	<1	<0.1	<25 <25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP130	0.5-0.7	Silty Clay	Coarse	8.5	11.5	37	7	32	21	16	20	36	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP131	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	4	24	12	12	9	19	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
TP132	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	4	19	10	12	10	18	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP1	0-0.2	Duplicate of TP128	Coarse	8.5	11.5	37	7	31	18	16	21	29	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP1 - [LAB_DUP] SDUP2	0-0.2 0-0.2	Laboratory Duplicate Duplicate of TP129	Coarse Coarse	8.5 8.5	11.5 11.5	37 37	6	34 19	19 14	18 16	24 14	33	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 150	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05
SDUP3	0-0.2	Duplicate of TP125	Coarse	8.5	11.5	37	5	25	15	16	17	30	<1	NA NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP4	0-0.2	Duplicate of TP119	Coarse	8.5	11.5	37	6	24	16	17	15	60	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP5	0-0.2	Duplicate of TP116	Coarse	8.5	11.5	37	7	24	13	11	13	27	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP5 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	6	23	13	13	14	26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP6	0-0.2	Duplicate of TP114	Coarse	8.5	11.5	37	8	24	14	10	15	34	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
Total Number of Sample	es			63	63	63	62	62	62	62	62	62	60	25	60	60	60	60	60	60	60	60	60
Maximum Value				8.5	11.5	37	13	40	160	75	29	120	<pql< td=""><td><pql< td=""><td><pql< td=""><td>210</td><td>630</td><td>290</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>210</td><td>630</td><td>290</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>210</td><td>630</td><td>290</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	210	630	290	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.4</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.4</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.4</td></pql<></td></pql<>	<pql< td=""><td>0.4</td></pql<>	0.4

Concentration above the SAC
Concentration above the PQL
The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

Sample Reference	Sample	Sample Description	Soil Texture	pH	CEC	Clay Content	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xvienes	B(a)P
	Depth				(cmolc/kg)	(% clay)	100							180	180		300	2800	50	85	70		20
BH101 BH101 - [LAB_DUP]	0.1-0.3 0.1-0.3	F: Silty Clay Laboratory Duplicate	Coarse Coarse	8.5 8.5	11.5 11.5	37 37	100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180	120 120	300	2800	50	85	70	105 105	20
BH101 - [LAB_DOP]	0.1-0.3	laboratory Triplicate	Coarse	8.5	11.5	37	100	410	230	1200	280	780						2800			70		
BH101	0.6-0.95	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
BH102	0.02-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
BH103	0.02-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
BH103	0.6-0.95	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
BH104	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
BH104	0.6-0.95	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
BH104	4.6-4.95	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
BH105	0.05-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP106	0-0.2	F: Silty Sandy Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP107	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP107 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP107	0.7-0.9	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP108	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP109	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP109	0.7-0.9	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP110	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37 37	100	410	230	1200	280	780	170		180 180	120		2800	50	85 85	70	105	20
TP110 TP111	0.6-0.8	Silty Clay	Coarse	8.5 8.5	11.5 11.5	37	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170		180	120 120	300 300	2800 2800	50 50	85 85	70 70	105 105	20
TP111	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP112 TP113	0-0.2	F: Silty Clay F: Silty Clay	Coarse Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP113	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP114 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37								180									
TP114	0.8-1	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP115	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP115	1.1-1.3	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP116	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP116 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP117	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP118	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP118	1-1.2	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP119	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP119	0.7-0.9	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP120	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP120 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP120	0.6-0.8	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180 180	120	300	2800 2800	50 50	85	70	105	20
TP121 BH122	0-0.2	F: Silty Clay	Coarse	8.5 8.5	11.5 11.5	37 37	100	410 410	230 230	1200 1200	280 280	780 780	170 170		180	120 120	300	2800	50	85 85	70	105 105	20
TP123	0.05-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85 85	70	105	20
TP123	0.6-0.8	F: Silty Clayey Sand Silty Sandy Clay	Coarse Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP123	0.6-0.8	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP124	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP125	0.7-09	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP126	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP127	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP127	0.6-0.8	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP128	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP128 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP129	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP130	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP130	0.5-0.7	Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
TP131	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
TP132	0-0.2	F: Silty Clay	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
SDUP1	0-0.2	Duplicate of TP128	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
SDUP1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
SDUP2	0-0.2	Duplicate of TP129	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
SDUP3	0-0.2	Duplicate of TP125	Coarse	8.5	11.5	37	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	20
SDUP4	0-0.2	Duplicate of TP119	Coarse	8.5	11.5	37	100	410 410	230 230	1200	280	780 780	170 170		180 180	120 120	300	2800	50 50	85 85	70 70	105	20
SDUP5	0-0.2	Duplicate of TP116	Coarse	8.5	11.5	37	100		230	1200 1200	280 280	780	1/0		180	120	300	2800	50	85	/0	105	20
SDUP5 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Coarse	8.5	11.5	37 37	100	410 410	230	1200	280	780	170	180	180	120	300	2800	50	85	70	105	20
SDUP6	0-0.2	Duplicate of TP114	Coarse	8.5	11.5	3/	100	410	230	1200	200	/60	1/0	100	100	120	300	2000	ου	60	//	100	20

TABLE S7
SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES
All data in mg/kg unless stated otherwise

						HEAVI	METALS				PA	AHs		OC/OP	PESTICIDES		Total			TRH				BTEX CO	IVIFOUNDS		i
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
											PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	
QL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
eneral Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
eneral Solid Waste SCC			500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste C			400 2000	80 400	400 7600	NSL NSL	400 6000	16 200	160 4200	NSL NSL	800 800	3.2	240 432	16 30	1000	50 50	50 50	2600 2600		NSL NSL		40,000	40 72	1,152 2,073	2,400 4,320	4,000 7,200	-
Restricted Solid Waste S			2000	400	7600	INSL	6000	200	4200	INSL	800	23	432	30	1000	50	30	2000		INSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									i
BH101	0.1-0.3	F: Silty Clay	13	<0.4	25	31	13	<0.1	18	55	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH101 - [LAB_DUP]	0.1-0.3	Laboratory Duplicate	12	<0.4	24	26	12	<0.1	13	36	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH101 - [LAB_TRIP]	0.1-0.3	laboratory Triplicate	8	<0.4	24	22	14	<0.1	14	40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH101 BH102	0.6-0.95 0.02-0.2	F: Silty Clay	10	<0.4 <0.4	27 16	16 16	12 9	<0.1 <0.1	21 16	25 50	<0.05 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 120	<100 240	<50 360	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
3H103	0.02-0.2	F: Silty Clay F: Silty Clay	7	<0.4	34	25	17	<0.1	20	39	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH103	0.6-0.95	Silty Clay	5	<0.4	27	20	14	<0.1	17	32	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH104	0-0.2	F: Silty Clay	6	<0.4	22	31	23	0.1	11	96	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH104	0.6-0.95	Silty Clay	6	<0.4	27	22	14 27	<0.1	20	38	<0.05	<0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
BH104 BH105	4.6-4.95 0.05-0.2	Silty Clay F: Silty Clay	<4 6	<0.4 <0.4	27 25	16 14	13	<0.1 <0.1	19 14	49 30	<0.05 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
TP106	0-0.2	F: Silty Sandy Clay	<4	<0.4	10	3	5	<0.1	2	7	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP107	0-0.2	F: Silty Clay	<4	<0.4	17	11	9	<0.1	9	23	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP107 - [LAB_DUP]	0-0.2	Laboratory Duplicate	<4	<0.4	13	9	7	<0.1	6	17	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
TP107 TP108	0.7-0.9 0-0.2	F: Silty Clay F: Silty Clay	- 8 6	<0.4 <0.4	40 28	24 18	18 15	<0.1 <0.1	23 17	41 35	<0.05 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
TP109	0-0.2	F: Silty Clay	5	<0.4	20	15	75	<0.1	12	78	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP109	0.7-0.9	Silty Clay	8	<0.4	32	21	17	<0.1	22	42	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP110	0-0.2	F: Silty Clay	8	<0.4	40	22	18	<0.1	26	36	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP110 TP111	0.6-0.8 0-0.2	Silty Clay	7	<0.4 <0.4	28 25	21 14	17 11	<0.1 <0.1	17 15	47 37	<0.05 2	<0.05 0.4	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
TP112	0-0.2	F: Silty Clay F: Silty Clay	6	<0.4	24	160	49	<0.1	19	120	<0.05	<0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP113	0-0.2	F: Silty Clay	6	<0.4	30	18	18	<0.1	19	38	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP114	0-0.2	F: Silty Clay	10	<0.4	29	41	15	<0.1	17	38	<0.05	<0.05	<0.1	<0.1	<0.1	0.9	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP114 - [LAB_DUP]	0-0.2	Laboratory Duplicate	NA -	NA 10.4	NA 25	NA 24	NA 45	NA 10.1	NA 20	NA 25	NA 10.05	NA 10.05	<0.1	<0.1	<0.1	1.2	NA	NA 125	NA 450	NA 1100	NA 1100	NA 150	NA 10.2	NA 10.5	NA 11	NA 11	NA NA
TP114 TP115	0.8-1 0-0.2	Silty Clay F: Silty Clay	7 6	<0.4 <0.4	35 26	21 18	15 23	<0.1 <0.1	28 16	35 43	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
TP115	1.1-1.3	Silty Clay	9	<0.4	28	27	16	<0.1	20	69	<0.05	<0.05	NA	NA	NA NA	NA	NA	<25	<50	150	280	430	<0.2	<0.5	<1	<1	NA NA
TP116	0-0.2	F: Silty Clay	12	<0.4	26	15	17	<0.1	15	33	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP116 - [LAB_DUP]	0-0.2	Laboratory Duplicate	12	<0.4	25	17	16	<0.1	16	36	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
TP117 TP118	0-0.2 0-0.2	F: Silty Clay F: Silty Clay	<4 <4	<0.4 <0.4	14 12	11 19	12 12	<0.1 <0.1	7	35 32	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 77	<100 520	<100 390	<50 987	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
TP118	1-1.2	Silty Clay	9	<0.4	34	21	17	<0.1	22	44	<0.05	<0.05	NA	NA	NA NA	NA NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
TP119	0-0.2	F: Silty Clay	8	<0.4	30	20	21	<0.1	19	72	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP119	0.7-0.9	Silty Clay	9	<0.4	39	24	17	<0.1	22	43	<0.05	<0.05	NA O.4	NA .	NA O 4	NA O.4	NA O.4	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
TP120 TP120 - [LAB DUP]	0-0.2 0-0.2	F: Silty Clay	4	<0.4	17 15	15 13	15 14	0.5	7	65 57	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
TP120 - [LAB_DOF]	0.6-0.8	Laboratory Duplicate Silty Clay	8	<0.4	33	21	16	<0.1	21	39	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
TP121	0-0.2	F: Silty Clay	5	<0.4	21	35	17	<0.1	11	47	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH122	0.05-0.2	F: Silty Clay	8	<0.4	37	21	18	<0.1	29	44	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP123 TP123	0-0.2 0.6-0.8	F: Silty Clayey Sand	<4 4	<0.4 <0.4	10 21	3 12	5 11	<0.1 <0.1	14	16 28	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
TP124	0.6-0.8	Silty Sandy Clay F: Silty Clay	<4	<0.4	17	12	8	<0.1	5	30	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
ΓP125	0-0.2	F: Silty Clay	5	<0.4	25	14	15	<0.1	17	28	<0.05	<0.05	NA	NA	NA NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP125	0.7-09	Silty Clay	7	<0.4	36	22	19	<0.1	24	43	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP126 TP127	0-0.2 0-0.2	F: Silty Clay	6 5	<0.4 <0.4	27 22	14	15 16	<0.1	14 10	24 26	<0.05 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	Not Detected Not Detected
TP127	0.6-0.8	F: Silty Clay Silty Clay	8	<0.4	35	22	16	<0.1 <0.1	21	40	<0.05	<0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50	<100	<100	<50 <50	<0.2	<0.5	<1	<1 <1	Not Detected NA
TP128	0-0.2	F: Silty Clay	7	<0.4	36	18	15	<0.1	20	34	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP128 - [LAB_DUP]	0-0.2	Laboratory Duplicate	8	<0.4	37	19	16	<0.1	25	35	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP129	0-0.2	F: Silty Clay	6 5	<0.4	19	14	17	<0.1	14	33	<0.05	<0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
ΓΡ130 ΓΡ130	0-0.2 0.5-0.7	F: Silty Clay Silty Clay	7	<0.4 <0.4	26 32	15 21	15 16	<0.1 <0.1	16 20	23 36	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
TP131	0-0.2	F: Silty Clay	4	<0.4	24	12	12	<0.1	9	19	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
ΓP132	0-0.2	F: Silty Clay	4	<0.4	19	10	12	<0.1	10	18	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
DUP1	0-0.2	Duplicate of TP128	7	<0.4	31	18	16	<0.1	21	29	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
SDUP1 - [LAB_DUP] SDUP2	0-0.2 0-0.2	Laboratory Duplicate Duplicate of TP129	- 8 6	<0.4 <0.4	34 19	19 14	18 16	<0.1 <0.1	24 14	33 32	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 100	<50 100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
SDUP3	0-0.2	Duplicate of TP129 Duplicate of TP125	5	<0.4	25	15	16	<0.1	17	30	<0.05	<0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
SDUP4	0-0.2	Duplicate of TP119	6	<0.4	24	16	17	<0.1	15	60	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP5	0-0.2	Duplicate of TP116	7	<0.4	24	13	11	<0.1	13	27	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP5 - [LAB_DUP] SDUP6	0-0.2 0-0.2	Laboratory Duplicate	6 8	<0.4 <0.4	23 24	13 14	13 10	<0.1 <0.1	14 15	26 34	NA <0.05	NA <0.05	NA <0.1	NA <0.1	NA <0.1	NA 0.4	NA <0.1	NA <25	NA <50	NA <100	NA <100	NA <50	NA <0.2	NA <0.5	NA <1	NA <1	NA NA
3. 0	0 0.2	Duplicate of TP114		10.4	£-7	47	- 10	10.1			10.03	.0.03	~0.1	10.1	70.1	0.7	~0.1	`~2.5	1,50	-100	1100	-50	10.2	10.5		``_	1971
											!		!				!	!					!				,
Total Number of Samp	nles	İ	62	62	62	62	62	62	62	62	60	60	25	24	24	25	24	60	60	60	60	60	60	60	60	60	32

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL

TABLE G1 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILs SAC All results in $\mu g/L$ unless stated otherwise.

	PQL	ANZG				SAM	IPLES			
	Envirolab	2018	MW1	MW1	MW3	MW101	MW103	MW104	GWDUP1	GWDUP2
	Services	Fresh Waters		[LAB_DUP]						
Inorganic Compounds and Parameters										
рН	-	6.5 - 8.5	7	7	6.5	6.8	7.1	6.9	NA	NA
Electrical Conductivity (μS/cm)	1	NSL	16000	16000	1600	3100	1500	3500	NA	NA
Metals and Metalloids										
Arsenic (As III)	1	24	4	4	<1	2	<1	<1	<1	<1
Cadmium	0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium (SAC for Cr III adopted)	1	3.3	<1	<1	1	<1	2	<1	<1	<1
Copper	1	1.4	6	6	1	1	<1	1	<1	3
Lead	1	3.4	<1	<1	<1	<1	<1	<1	<1	<1
Total Mercury (inorganic)	0.05	0.06	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	1	11	24	23	2	6	1	3	3	1
Zinc	1	8	13	12	18	27	10	9	8	16
Monocyclic Aromatic Hydrocarbons (BTEX	Compounds)									
Benzene	1	950	<1	NA	<1	<1	<1	<1	<1	<1
Toluene	1	180	<1	NA	<1	<1	<1	<1	<1	<1
Ethylbenzene	1	80	<1	NA	<1	<1	<1	<1	<1	<1
m+p-xylene	2	75	<2	NA	<2	<2	<2	<2	<2	<2
o-xylene	1	350	<1	NA	<1	<1	<1	<1	<1	<1
Total xylenes	2	NSL	<2	NA	<2	<2	<2	<2	<2	<2
Total Recoverable Hydrocarbons (TRHs)										
TRH F1	10	NSL	<10	NA	<10	<10	<10	<10	<10	<10
TRH F2	50	NSL	<50	NA	<50	<50	<50	<50	<50	<50
TRH F3	100	NSL	<100	NA	<100	<100	<100	<100	<100	<100
TRH F4	100	NSL	<100	NA	<100	<100	<100	<100	<100	<100
Polycyclic Aromatic Hydrocarbons (PAHs)										
Naphthalene	0.2	16	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1	0.6	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1	0.01	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1	1	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	0.2	NSL	<0.2	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	0.1	0.1	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Concentration above the SAC

Concentration above the PQL

GIL >PQL

Red

TABLE G2 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO HUMAN CONTACT GILs All results in $\mu g/L$ unless stated otherwise.

	PQL	Recreational				SAM	IPLES			
	Envirolab Services	(10 x NHMRC ADWG)	MW1	MW1 [LAB DUP]	MW3	MW101	MW103	MW104	GWDUP1	GWDUP2
Inorganic Compounds and Parameters		(20 %		[[[
pH	_	6.5 - 8.5	7	7	6.5	6.8	7.1	6.9	NA	NA
Electrical Conductivity (μS/cm)	1	NSL	16000	16000	1600	3100	1500	3500	NA	NA
Metals and Metalloids										
Arsenic (As III)	1	100	4	4	<1	2	<1	<1	<1	<1
Cadmium	0.1	20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium (total)	1	500	<1	<1	1	<1	2	<1	<1	<1
Copper	1	20000	6	6	1	1	<1	1	<1	3
Lead	1	100	<1	<1	<1	<1	<1	<1	<1	<1
Total Mercury (inorganic)	0.05	10	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	1	200	24	23	2	6	1	3	3	1
Zinc	1	30000	13	12	18	27	10	9	8	16
Monocyclic Aromatic Hydrocarbons (BTEX Cor	npounds)									
Benzene	1	10	<1	NA	<1	<1	<1	<1	<1	<1
Toluene	1	8000	<1	NA	<1	<1	<1	<1	<1	<1
Ethylbenzene	1	3000	<1	NA	<1	<1	<1	<1	<1	<1
m+p-xylene	2	NSL	<2	NA	<2	<2	<2	<2	<2	<2
o-xylene	1	NSL	<1	NA	<1	<1	<1	<1	<1	<1
Total xylenes	2	6000	<2	NA	<2	<2	<2	<2	<2	<2
Total Recoverable Hydrocarbons (TRHs)										
TRH F1	10	NSL	<10	NA	<10	<10	<10	<10	<10	<10
TRH F2	50	NSL	<50	NA	<50	<50	<50	<50	<50	<50
TRH F3	100	NSL	<100	NA	<100	<100	<100	<100	<100	<100
TRH F4	100	NSL	<100	NA	<100	<100	<100	<100	<100	<100
Polycyclic Aromatic Hydrocarbons (PAHs)										
Naphthalene	0.2	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	0.2	NSL	<0.2	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	0.1	0.1	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Concentration above the SAC Concentration above the PQL GIL >PQL

VALUE Bold Red

TABLE G3

GROUNDWATER LABORATORY RESULTS COMPARED TO HSLs

All data in $\mu g/L$ unless stated otherwise

				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	
PQL - Envirolab Se	ervices			10	50	1	1	1	2	1	PID
NEPM 2013 - Land	d Use Categor	ТУ			ŀ	ISL-A/B: LO	ow/HIGH [DENSITY RESIDEN	TIAL		
Sample Reference	Water Depth	Depth Category	Soil Category								
MW1	3.64	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0
MW3	3.69	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0
MW101	3.67	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	1.5
MW103	3.69	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	1.1
MW104	3.64	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0.7
GWDUP1	3.64	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	NA
GWDUP2	3.69	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	NA
Total Number of	Samples			7	7	7	7	7	7	7	5
Maximum Value				<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.5</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>1.5</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>1.5</td></pql<></td></pql<>	<pql< td=""><td>1.5</td></pql<>	1.5

Concentration above the SAC

Site specific assesment (SSA) required

Concentration above the PQL

Bold

The guideline corresponding to the elevated value is highlighted in grey in the Groundwater Assessment Criteria Table below

HSL GROUNDWATER ASSESSMENT CRITERIA

Sample Reference	Water Depth	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
MW1	3.64	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL
MW3	3.69	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL
MW101	3.67	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL
MW103	3.69	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL
MW104	3.64	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL
GWDUP1	3.64	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL
GWDUP2	3.69	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL

Result outside of QA/QC acceptance criteria

TABLE Q1 SOIL QA/QC SUMMARY																																																																	
		TRH C6 - C10	010-010	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b.j+k)fluoranthen	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	нсв	alpha- BHC	gamma- BHC	beta- BHC	Hebtachlor	delta- BHC	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	DDD-dd	Endosulfan II	PP-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Azinphos-methyl (Guthic	Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS	Arsenic	Chromium	Copper	Lead	Mercury	Nickel	Zinc	
PQL Envirolab SYD PQL Envirolab VIC								2																																					0.1													4 0. 4 0.			1			1	
Intra TP128 0-0.2 laboratory SDUP1 0-0.2 duplicate MEAN RPD %	<	<25 < <25 < nc r	50 <1	.00 <10	00 <0.	2 <0 2 <0 : nc	5 <1 nc	<2 <2 nc nc	<1 nc	<0.1 nc	<0.1	<0.1	1 <0.:	1 <0. 1 <0. nc	1 <0. 1 <0. no	1 <0. 1 <0. : no		l <0.		<0.2	2 <0.0 nc	15 <0.	1 <0.:	1 <0.1	<0.1	1 <0.	1 <0.	1 <0.	.1 <0	1 <0.:	1 <0.1	1 <0.1	1 <0.1	1 <0.1		<0.1	<0.1	<0.1 nc	<0.1 <0.1 nc nc	<0.1 nc	<0.1 nc	<0.1	<0.1 nc	<0.1 nc	<0.1 nc	<0.1 nc	<0.1	<0.1 nc	<0.1 <0.1 nc nc		<0.1	<0.1	<0.1 nc	<0.1 nc	<0.1 <	0.1 <		7 <0 7 n		1 18 .5 18	8 16 8 15.		.1 21		5
Intra TP129 0-0.2 laboratory SDUP2 0-0.2 duplicate MEAN RPD %		nc r	50 1 nc 1 nc 0	50 <10 50 no % no	00 <0. : no	2 <0.: nc	5 <1 nc nc	nc nc	<1 <1 nc nc	<0.1 nc	<0.1 nc nc	<0.1 nc nc	1 <0.: nc	l <0.	1 <0.	1 <0.	1 <0.: nc	l <0. nc	nc	nc nc	2 <0.0 nc	15 <0.: nc	1 <0.: nc	1 <0.1 nc	. NA nc nc	nc	NA NA	N/	A NA A NA E no	NA NA	NA NA NA nc nc	NA NA	NA NA	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA		NA I		6 <0 6 <0 6 n 0% n	c 19		4 17 4 16 4 16. % 6%	6 <0	.1 14	4 32.5	
Intra TP125 0-0.2 Iaboratory SDUP3 0-0.2 duplicate MEAN RPD %		<25 < <25 < nc r	50 <1 nc r	00 <10 ic no ic no	00 <0. : no	2 <0.: nc	nc nc	<2 nc nc	nc nc	nc nc	nc nc	<0.1 nc nc	1 <0.: nc	nc	no		1 <0.: nc	l <0. nc	nc	nc nc	nc nc	15 <0. nc	1 <0.: nc nc	1 <0.1 nc	nc	nc nc	NA NA							NA NA nc nc							NA NA nc nc		NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc				nc nc	nc nc	nc nc	NA NA nc nc		c 25	6 7%	% 6%	% n	17	7 29 % 7%	
Inter TP119 0-0.2 laboratory SDUP4 0-0.2 duplicate MEAN RPD %		nc r	50 <1 nc r	00 <10	00 <0. : no	2 <0 nc	5 <1 nc nc	<2 <2 nc nc	<1 nc nc	<0.1 nc nc	nc	<0.1 nc nc	1 <0.: nc	L <0. L <0. nc	1 <0.	1 <0.	1 <0.: nc	l <0. nc	1 <0.1 1 <0.1 nc	nc nc	2 <0.0 nc nc	15 <0.: nc	1 <0.: nc	1 <0.1 nc	. NA nc nc	nc	NA NA	A NA	A N/	NA NA	NA NA nc	NA NA	NA NA	NA nc nc	NA NA nc nc	NA nc nc	NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA nc nc	nc	NA nc nc	NA nc nc		NA nc nc		NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA nc nc	NA nc nc	NA nc nc	nc nc	nc nc		6 <0 7 n 29% n	c 229	4 16 7 18 % 229	6 17 8 19 % 219	7 <0 9 n % n	249	5 60 7 66 % 18%	
Inter TP116 0-0.2 aboratory SDUP5 0-0.2 duplicate MEAN RPD %		<25 < <25 < nc r	50 <1 nc r	00 <10	00 <0. 00 <0. : no	2 <0 2 <0 : nc	5 <1 5 <1 nc nc		<1 <1 nc nc		<0.1 <0.1 nc nc			L <0. L <0. nc	1 <0. 1 <0. no	1 <0. 1 <0. : no	1 <0.: nc	l <0.	1 <0.1 1 <0.1 nc	. <0.2 . <0.2 nc	2 <0.0 2 <0.0 nc	15 <0.: 15 <0.: nc	1 <0.: nc	1 <0.1 1 <0.1 : nc : nc	. NA nc nc	1 <0. NA nc	NA NA	NA NA	A N/	1 <0.: A NA : nc : nc	1 <0.1 NA NA nc	NA NA	NA NA	1 <0.1 NA nc nc	<0.1 NA nc nc	NA nc nc	NA nc nc	NA nc nc	NA nc nc	NA nc nc	NA nc nc	NA nc nc	<0.1 NA nc nc	NA nc nc	NA nc nc	NA nc nc	<0.1 NA nc nc	<0.1 NA nc nc	<0.1 NA nc nc	<0.1 NA nc nc	<0.1 NA nc nc	<0.1 NA nc nc	nc nc	nc nc	NA		NA nc	12 <0 7 <0 9.5 n 53% n	.4 24 c 25	4 13 5 14	3 11 4 14	1 <0 4 n	149	3 27	
Inter TP114 0-0.2 Iaboratory SDUP6 0-0.2 MEAN RPD %	1		50 <1 nc r	00 <10	: no		nc	nc nc	nc nc	nc	nc nc	nc nc	nc nc	nc	no	no no	nc	l <0. nc	nc	nc nc	nc nc	nc	1 <0.: nc		. <0.1 nc nc	1 <0.	1 <0.	1 <0.	.1 <0	nc	nc	nc	1 <0.1	nc	nc	nc	0.4	<0.1	<0.1	<0.1 nc	<0.1 nc	<0.1		<0.1 nc	<0.1 nc	nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	nc	nc	<0.1 <0.1 nc nc	nc	<0.1 nc	nc	<0.1 < <0.1 < nc nc	nc	nc 2	10 <0 8 <0 9 n 22% n	c 26.	% 989	.5 12. % 409	1.5 n	1 15 16 139	6 36 % 11%	
Field TB-S1 - 18/09/23 Field TB-S2 -								<2					1 <0						1 <0.1															Ė			Ė			-								-										<4 <0							1
Blank 25/09/23 Field FR1-HA μg/L		<10 <						<2	<1				1 <0.:			1 <0.			1 <0.1							-					-	-		-	-			-			-	-	-	-		-	-	-					-	-		-								02 <0.02	2
Rinsate 22/09/23 Trip TS-S1								5 97%	96%				-								-		-		ŧ	-					-			-						_		_	-					_								+									1
Spike 18/09/23 Trip TS-S2		-	-					6 102%			-														1										-		-	-	-	-	-	-	-		-	-	-	-		_		-	-	-	-	_	-							#	1
Spike 25/09/23																																																																	4

Rinsate metals results in mg/L

TABLE Q2

GROUNDWATER QA/QC SUMMARY

CHOCHE WAY																																	
		TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	IRH >C34-C40	Senzene	Toluene	Ethylbenzene	n+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	-luorene	Phenanthrene	Anthracene	-Iuoranthene	yrene	3enzo(a)anthracene	Chrysene	3enzo(b.j+k)fluoranthene	3enzo(a)pyrene	ndeno(1,2,3-c,d)pyrene	Oibenzo(a,h)anthra-cene	3enzo(g,h,i)perylene	Arsenic	Sadmium	Ohromium	Sopper	-ead	Meroury	Nickel	Zinc
	PQL Envirolab SYD	10	50	100	100	1	1	1	2	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
	PQL Envirolab VIC	10	50	100	100	1	1	1	2	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
Intra	MW104	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	1	<1	<0.05	3	9
laboratory	GWDUP1	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	<1	<1	<0.05	3	8
duplicate	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.75	nc	nc	3	8.5
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	67%	nc	nc	0%	12%
Inter	MW3	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	1	1	<1	0.06	2	18
laboratory	GWDUP2	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	3	<1	<0.05	1	16
duplicate	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.75	2	nc	0.0425	1.5	17
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	67%	100%	nc	82%	67%	12%
Field	TB-W1	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	<1	<1	<0.05	<1	<1
Blank	25/09/2023																																
Field	FR2-DIP	15	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	110	<1	<0.05	<1	6
Rinsate	26/09/2023																																
Trip	TS-W1	-	-	-	-	106%	102%	115%	114%	111%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Spike	25/09/2023																																

Result outside of QA/QC acceptance criteria

Value

PSI Results Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: **Asbestos Containing Material** PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene)

ADWG: Australian Drinking Water Guidelines pH_{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight

AF: Ashestos Fines pH_{ox}: pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Australian and New Zealand Guidelines PQL: **Practical Quantitation Limit**

B(a)P: Benzo(a)pyrene RS: Rinsate Sample

CEC: Cation Exchange Capacity RSL: **Regional Screening Levels** CRC: Cooperative Research Centre RSW: **Restricted Solid Waste** CT: Contaminant Threshold SAC: Site Assessment Criteria

EILs: **Ecological Investigation Levels** SCC: **Specific Contaminant Concentration**

ESLs: **Ecological Screening Levels** Chromium reducible sulfur S_{cr}: FA: Fibrous Asbestos Peroxide oxidisable Sulfur S_{POS}: GIL: Site Specific Assessment **Groundwater Investigation Levels** SSA:

GSW: General Solid Waste **SSHSLs:** Site Specific Health Screening Levels

HILS: **Health Investigation Levels** TAA: Total Actual Acidity in 1M KCL extract titrated to pH6.5

HSLs: **Health Screening Levels** TB: Trip Blank

TCA: 1,1,1 Trichloroethane (methyl chloroform) **HSL-SSA:** Health Screening Level-SiteSpecific Assessment kg/L TCE: Trichloroethylene (Trichloroethene) kilograms per litre

Not Analysed NA: TCLP: **Toxicity Characteristics Leaching Procedure** NC: Not Calculated TPA: Total Potential Acidity, 1M KCL peroxide digest

NEPM: National Environmental Protection Measure TS: Trip Spike NHMRC: National Health and Medical Research Council TRH: Total Recoverable Hydrocarbons

TSA: Total Sulfide Acidity (TPA-TAA) NL: **Not Limiting**

NSL: UCL: Upper Level Confidence Limit on Mean Value No Set Limit OCP: Organochlorine Pesticides **USEPA** United States Environmental Protection Agency OPP: Organophosphorus Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation PAHs:

%w/w: weight per weight ppm: Parts per million

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

						HEAVY N	METALS					PAHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		
All data in mg/kg unle	ess stated othe	rwise	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	Carcinogenic	НСВ	Endosulfan	Methoxychlor		Chlordane	,	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Servic			4	0.4	1	1	1	0.1	1	1	PAHs	PAHs 0.5	0.1	0.1	0.1	Dieldrin	0.1	& DDE 0.1	0.1	0.1	0.1	100
			100		-	1			_		200			0.1		0.1			0.1		0.1	
Site Assessment Crite			100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH1	0-0.2	F: Silty Clay	4	<0.4	18	13	13	<0.1	9	27	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	4	<0.4	18	12	13	<0.1	10	26	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH1	0.3-0.5	Silty Clay	4	<0.4	25	16	16	<0.1	12	24	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH1	1.3-1.5	Silty Clay	7	<0.4	27	21	16	<0.1	15	40	< 0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH2	0-0.2	F: Silty Clay	<4	<0.4	16	12	11	<0.1	9	21	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH2	1-1.4	Silty Clay	7	<0.4	29	21	17	<0.1	17	42	< 0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH3	0-0.2	F: Silty Clay	<4	<0.4	14	9	11	<0.1	8	49	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
вн3	0.3-0.5	Silty Clay	<4	<0.4	18	11	8	<0.1	11	19	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH4	0-0.2	F: Clayey Silt	<4	<0.4	14	11	8	<0.1	9	37	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH4	0.3-0.5	Silty Clay	5	<0.4	25	15	12	<0.1	17	23	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	0-0.2	F: Silty Sand	5	<0.4	10	9	7	<0.1	6	26	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH5	0.3-0.5	Silty Clay	<4	<0.4	20	12	11	<0.1	12	22	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH6	0-0.5	Sandy Silty Clay	5	<0.4	28	20	15	<0.1	17	36	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH6 - [LAB_DUP]	0-0.5	Laboratory Duplicate	5	<0.4	28	20	16	<0.1	16	37	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH7	0-0.2	F: Sandy Silty Clay	5	<0.4	11	15	7	<0.1	11	65	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH7	0.2-0.7	Sandy Silty Clay	5	<0.4	25	22	14	<0.1	27	46	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH8	0-0.2	F: Silty Clay	<4	<0.4	23	15	16	<0.1	14	31	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH8	0.8-1	Sandy Silty Clay	6	<0.4	28	29	16	<0.1	20	66	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH9	0-0.2	F: Sandy Silt	<4	<0.4	18	14	12	<0.1	11	42	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
вн9	0.5-0.9	Silty Clay	6	<0.4	26	28	14	<0.1	20	71	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP10	0-0.2	F: Silty Clay	<4	<0.4	16	10	11	<0.1	8	24	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP10 - [LAB DUP]	0-0.2	Laboratory Duplicate	<4	<0.4	16	10	10	<0.1	8	23	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP10	0.3-0.6	Silty Clay	5	<0.4	23	17	12	<0.1	14	25	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ГР11	0-0.2	F: Silty Clay	<4	<0.4	18	12	11	<0.1	9	24	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
ГР11	0.4-0.6	Silty Clay	7	<0.4	30	25	16	<0.1	19	47	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP12	0-0.2	F: Silty Clay	<4	<0.4	11	8	7	<0.1	6	22	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
ГР12	0.5-0.7	F: Silty Clay	6	<0.4	31	18	16	<0.1	18	32	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP1	0-0.2	Duplicate of BH1	5	<0.4	21	14	15	<0.1	11	31	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP2	0-0.2	Duplicate of BH3	<4	<0.4	17	11	11	<0.1	9	56	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP3	0-0.2	Duplicate of BH2	<4	<0.4	18	13	10	<0.1	10	21	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
	0-0.2	Laboratory Duplicate	NA	NA	NA	NA	NA	NA	NA	NA	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	<0.1	NA	NA
SDUP4	0-0.2	Duplicate of BH4	<4	<0.4	13	11	7	<0.1	8	34	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Number of Sa	mples		31	31	31	31	31	31	31	31	32	32	17	17	17	17	17	17	17	18	17	12
Maximum Value			7	<pql< td=""><td>31</td><td>29</td><td>17</td><td><pql< td=""><td>27</td><td>71</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	31	29	17	<pql< td=""><td>27</td><td>71</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	27	71	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
PQL - Envirolab Services	,				25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 HSL Land Us	se Category				i		HSL-A/B: LC	OW/HIGH DENSITY	RESIDENTIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	1							
BH1	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH1	0.3-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH1	1.3-1.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
BH2	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH2	1-1.4	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH3	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH3	0.3-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH4	0-0.2	F: Clayey Silt	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH4	0.3-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
BH5	0-0.2	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
BH5	0.3-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
BH6	0-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH6 - [LAB_DUP]	0-0.5	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH7	0-0.2	F: Sandy Silty Clay	0m to <1m	Sand	<25	130	<0.2	<0.5	<1	<1	<1	0
BH7	0.2-0.7	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH8	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH8	0.8-1	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH9	0-0.2	F: Sandy Silt	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH9	0.5-0.9	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
TP10	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
TP10 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
TP10	0.3-0.6	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.9
TP11	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
TP11	0.4-0.6	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2.4
TP12	0-0.2	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
TP12	0.5-0.7	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
SDUP1	0-0.2	Duplicate of BH1	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP2	0-0.2	Duplicate of BH3	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP3	0-0.2	Duplicate of BH2	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP3 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP4	0-0.2	Duplicate of BH4	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
Total Number of Samp	ples				32	32	32	32	32	32	32	24
Maximum Value	,,,,,				<pql< td=""><td>130</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	130	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<>	<pql< td=""><td>2.4</td></pql<>	2.4

Concentration above the SAC

VALUE Bold

Concentration above the PQL

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH1	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1	0.3-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1	1.3-1.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	1-1.4	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0.3-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0-0.2	F: Clayey Silt	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0.3-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0-0.2	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0.3-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6 - [LAB_DUP]	0-0.5	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0-0.2	F: Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0.2-0.7	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.8-1	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH9	0-0.2	F: Sandy Silt	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH9	0.5-0.9	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP10	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP10 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP10	0.3-0.6	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP11	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP11	0.4-0.6	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP12	0-0.2	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP12	0.5-0.7	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP1	0-0.2	Duplicate of BH1	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP2	0-0.2	Duplicate of BH3	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP3	0-0.2	Duplicate of BH2	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP3 - [LAB_DUP]	0-0.2	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP4	0-0.2	Duplicate of BH4	0m to <1m	Sand	45	110	0.5	160	55	40	3

TABLE S3
SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS
All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4
QL - Envirolab Service	oc .		25	napthalene 50	100	100
EPM 2013 Land Use				SIDENTIAL, PARKLAND		
	<u> </u>				- a : 052.0 0 : 2.1 0 :	
Sample Reference	Sample Depth	Soil Texture				
BH1	0-0.2	Coarse	<25	<50	190	<100
BH1 - [LAB_DUP]	0-0.2	Coarse	<25	<50	330	<100
BH1	0.3-0.5	Coarse	<25	<50	<100	<100
BH1	1.3-1.5	Coarse	<25	<50	<100	<100
BH2	0-0.2	Coarse	<25	<50	<100	<100
BH2	1-1.4	Coarse	<25	<50	<100	<100
BH3	0-0.2	Coarse	<25	<50	<100	<100
BH3	0.3-0.5	Coarse	<25	<50	<100	<100
BH4	0-0.2	Coarse	<25	<50	<100	<100
BH4	0.3-0.5	Coarse	<25	<50	<100	<100
BH5	0-0.2	Coarse	<25	<50	<100	<100
BH5	0.3-0.5	Coarse	<25	<50	<100	<100
BH6	0-0.5	Coarse	<25	<50	<100	<100
BH6 - [LAB_DUP]	0-0.5	Coarse	<25	<50	<100	<100
BH7	0-0.2	Coarse	<25	130	540	350
BH7	0.2-0.7	Coarse	<25	<50	<100	<100
BH8	0-0.2	Coarse	<25	<50	<100	<100
BH8	0.8-1	Coarse	<25	<50	<100	<100
BH9	0-0.2	Coarse	<25	<50	160	<100
BH9	0.5-0.9	Coarse	<25	<50	<100	<100
TP10	0-0.2	Coarse	<25	<50	<100	<100
TP10 - [LAB_DUP]	0-0.2	Coarse	<25	<50	<100	<100
TP10	0.3-0.6	Coarse	<25	<50	<100	<100
TP11	0-0.2	Coarse	<25	<50	<100	<100
TP11	0.4-0.6	Coarse	<25	<50	<100	<100
TP12	0-0.2	Coarse	<25	<50	<100	<100
TP12	0.5-0.7	Coarse	<25	<50	<100	<100
SDUP1	0-0.2	Coarse	<25	<50	150	<100
SDUP2	0-0.2	Coarse	<25	<50	<100	<100
SDUP3	0-0.2	Coarse	<25	<50	<100	<100
SDUP3 - [LAB_DUP]	0-0.2	Coarse	<25	<50	<100	<100
SDUP4	0-0.2	Coarse	<25	<50	<100	<100
otal Number of Sam	ples		32 <pql< td=""><td>32</td><td>32</td><td>32</td></pql<>	32	32	32
laximum Value				130	540	350

Concentration above the SAC Concentration above the PQL

VALUE Bold

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
Sample Reference	Sample Depth	3011 Texture	BTEX	napthalene	>C ₁₆ -C ₃₄ (13)	>C ₃₄ -C ₄₀ (14)
BH1	0-0.2	Coarse	700	1000	2500	10000
BH1 - [LAB_DUP]	0-0.2	Coarse	700	1000	2500	10000
BH1	0.3-0.5	Coarse	700	1000	2500	10000
BH1	1.3-1.5	Coarse	700	1000	2500	10000
BH2	0-0.2	Coarse	700	1000	2500	10000
BH2	1-1.4	Coarse	700	1000	2500	10000
BH3	0-0.2	Coarse	700	1000	2500	10000
BH3	0.3-0.5	Coarse	700	1000	2500	10000
BH4	0-0.2	Coarse	700	1000	2500	10000
BH4	0.3-0.5	Coarse	700	1000	2500	10000
BH5	0-0.2	Coarse	700	1000	2500	10000
BH5	0.3-0.5	Coarse	700	1000	2500	10000
BH6	0-0.5	Coarse	700	1000	2500	10000
BH6 - [LAB_DUP]	0-0.5	Coarse	700	1000	2500	10000
BH7	0-0.2	Coarse	700	1000	2500	10000
BH7	0.2-0.7	Coarse	700	1000	2500	10000
BH8	0-0.2	Coarse	700	1000	2500	10000
BH8	0.8-1	Coarse	700	1000	2500	10000
BH9	0-0.2	Coarse	700	1000	2500	10000
BH9	0.5-0.9	Coarse	700	1000	2500	10000
TP10	0-0.2	Coarse	700	1000	2500	10000
TP10 - [LAB_DUP]	0-0.2	Coarse	700	1000	2500	10000
TP10	0.3-0.6	Coarse	700	1000	2500	10000
TP11	0-0.2	Coarse	700	1000	2500	10000
TP11	0.4-0.6	Coarse	700	1000	2500	10000
TP12	0-0.2	Coarse	700	1000	2500	10000
TP12	0.5-0.7	Coarse	700	1000	2500	10000
SDUP1	0-0.1	Coarse	700	1000	2500	10000
SDUP2	0-0.1	Coarse	700	1000	2500	10000
SDUP3	0-0.1	Coarse	700	1000	2500	10000
SDUP3 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
SDUP4	0-0.2	Coarse	700	1000	2500	10000

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contac	t Criteria	4,400	3,300	4,500	6,300	100	14,000	4,500	12,000	1,400	
Site Use				RESIDE	NTIAL WITH AC	CESSIBLE SOIL-	DIRECT SOIL C	ONTACT			
Sample Reference	Sample Depth										
BH1	0-0.2	<25	<50	190	<100	<0.2	<0.5	<1	<1	<1	0
BH1 - [LAB_DUP]	0-0.2	<25	<50	330	<100	<0.2	<0.5	<1	<1	<1	NA
BH1	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH1	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
BH2	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH2	1-1.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH3	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH3	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH4	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH4	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1
BH5	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1
BH5	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
BH6	0-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH6 - [LAB DUP]	0-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH7	0-0.2	<25	130	540	350	<0.2	<0.5	<1	<1	<1	0
BH7	0.2-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH8	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH8	0.8-1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH9	0-0.2	<25	<50	160	<100	<0.2	<0.5	<1	<1	<1	0
BH9	0.5-0.9	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
TP10	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
TP10 - [LAB_DUP]	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP10	0.3-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
TP11	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
TP11	0.4-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.4
TP12	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
TP12	0.5-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
SDUP1	0-0.2	<25	<50	150	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP2	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP3	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP3 - [LAB_DUP]	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP4	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
Total Number of Sampl	es	32	32	32	32	32	32	32	32	32	24
Maximum Value		<pql< td=""><td>130</td><td>540</td><td>350</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	130	540	350	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<>	<pql< td=""><td>2.4</td></pql<>	2.4

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S5

ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS
HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

							_	FIELD DATA											LABORATOR	Y DATA						
	Sample	Sample	Visible ACM in	Approx Volume	Soil		Mass Asbestos	[Asbestos from ACM		Mass Asbestos in	[Asbestos from ACM		Mass	[Asbestos from FA in	Lab	Sample	Sample				Total		ACM >7mm	FA and AF	ACM >7mm	FA and A
Pate Sampled	reference		top	of Soil	Mass (g	Mass ACM (g)	in ACM	in soil]	Mass ACM <7mm (g)	ACM <7mm	<7mm in	Mass FA (g)	Asbestos in FA (g)	soil]	Report Number	refeference	Denth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	Estimation	Estimation (g)	Estimation	Estimatio %(w/w)
			100mm	(L)			(g)	(%w/w)	ļ	(g)	soil] (%w/w)		107	(/ow/w)				111 (0)			107 07		(g)	107	%(w/w)	
SAC			No			1		0.01		1 1	0.001			0.001		I	I					l I	I		0.01	0.001
9/05/2023	BH1	0-0.2	No	10	10,750	No ACM observed			No ACM <7mm observed			No FA observed			323127	BH1	0-0.2	594.57	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
9/05/2023	BH2	0-0.2	No	10	10,000	No ACM observed			No ACM <7mm observed			No FA observed			323127	BH2	0-0.2	622.63	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
9/05/2023	вн3	0-0.2	No	10	10,480	No ACM observed			No ACM <7mm observed			No FA observed			323127	BH3	0-0.2	708.16	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
9/05/2023	BH4	0-0.2	No	10	10,120	No ACM observed			No ACM <7mm observed			No FA observed			323127	BH4	0-0.2	684.4	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
10/05/2023	BH5	0-0.2	No	10	11,450	No ACM observed			No ACM <7mm observed			No FA observed			323127	BH5	0-0.2	664.72	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
8/05/2023	вн6	0-0.1	No	10	15,000	No ACM observed			No ACM <7mm observed			No FA observed			323127	BH6	0-0.5	679.27	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.001
8/05/2023	вн6	0.1-0.5	NA	10	11,450	No ACM observed	-		No ACM <7mm observed			No FA observed							-	-		-				
8/05/2023	BH7	0-0.2	No	10	10,400	No ACM observed	-		No ACM <7mm observed			No FA observed			323127	BH7	0-0.2	548.24	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
8/05/2023	BH7	0.2-0.7	NA	5	6,010	No ACM observed	-		No ACM <7mm observed			No FA observed							-							
8/05/2023	BH7	0.7-1	NA	10	10,110	No ACM observed	-		No ACM <7mm observed			No FA observed							-							
8/05/2023	BH8	0-0.2	No	10	10,660	No ACM observed	-		No ACM <7mm observed			No FA observed			323127	BH8	0-0.2	654.34	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.001
10/05/2023	вн9	0-0.2	No	10	10,010	No ACM observed	-		No ACM <7mm observed			No FA observed			323127	вн9	0-0.2	799.77	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.001
11/05/2023	TP10	0-0.2	No	10	10,410	No ACM observed	-		No ACM <7mm observed			No FA observed			323127	TP10	0-0.2	409.01	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.001
11/05/2023	TP10	0.2-0.3	NA	10	10,270	No ACM observed			No ACM <7mm observed			No FA observed							-							
11/05/2023	TP11	0-0.2	No	10	10,710	No ACM observed			No ACM <7mm observed			No FA observed			323127	TP11	0-0.2	664.01	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
11/05/2023	TP11	0.4-0.6	NA	10	10,470	No ACM observed			No ACM <7mm observed			No FA observed							-							
11/05/2023	TP12	0-0.2	No	10	11,040	No ACM observed			No ACM <7mm observed			No FA observed			323127	TP12	0-0.2	521.44	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
11/05/2023	TP12	0.5-0.7	NA	10	10,500	No ACM observed	-		No ACM <7mm observed			No FA observed							-							
oncentration a			VALUE						,						•					'						

Copyright JK Environments

TABLE S6
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLS
All data in mg/kg unless stated otherwise

Land Use Category												URBAN RESID	ENTIAL AND PUBL	IC OPEN SPAC	CE								
									AGED HEAV	Y METALS-EILs			EII	LS					ESLs				
				pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Con	centration (AB	BC)		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH1	0-0.2	F: Silty Clay	Fine	NA	NA	NA	4	18	13	13	9	27	<1	<0.1	<25	<50	190	<100	<0.2	<0.5	<1	<1	<0.05
BH1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Fine	NA	NA	NA	4	18	12	13	10	26	<1	<0.1	<25	<50	330	<100	<0.2	<0.5	<1	<1	<0.05
BH1	0.3-0.5	Silty Clay	Fine	NA	NA	NA	4	25	16	16	12	24	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH1	1.3-1.5	Silty Clay	Fine	NA	NA.	NA NA	7	27	21	16	15	40	<1	NA -0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH2	0-0.2	F: Silty Clay	Fine	NA	NA NA	NA NA	<4 7	16	12	11	9 17	21 42	<1	<0.1 NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH2 BH3	1-1.4 0-0.2	Silty Clay F: Silty Clay	Fine Fine	NA NA	NA NA	NA NA	<4	29 14	9	17 11	8	42	<1	<0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	<0.05 <0.05
BH3	0.3-0.5	Silty Clay	Fine	NA	NA NA	NA NA	<4	18	11	8	11	19	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH4	0.0.2	F: Clayey Silt	Fine	NA	NA.	NA NA	<4	14	11	8	9	37	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH4	0.3-0.5	Silty Clay	Fine	NA	NA.	NA	5	25	15	12	17	23	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH5	0-0.2	F: Silty Sand	Coarse	NA	NA	NA	5	10	9	7	6	26	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH5	0.3-0.5	Silty Clay	Fine	NA	NA	NA	<4	20	12	11	12	22	<1	NA	<25	<50	<100	<100	<0.2	< 0.5	<1	<1	<0.05
BH6	0-0.5	Sandy Silty Clay	Fine	NA	NA	NA	5	28	20	15	17	36	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH6 - [LAB_DUP]	0-0.5	Laboratory Duplicate	Fine	NA	NA	NA	5	28	20	16	16	37	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH7	0-0.2	F: Sandy Silty Clay	Fine	NA	NA	NA	5	11	15	7	11	65	<1	<0.1	<25	130	540	350	<0.2	<0.5	<1	<1	<0.05
BH7	0.2-0.7	Sandy Silty Clay	Fine	NA	NA	NA	5	25	22	14	27	46	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH8	0-0.2	F: Silty Clay	Fine	NA	NA	NA	<4	23	15	16	14	31	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH8	0.8-1	Sandy Silty Clay	Fine	NA	NA NA	NA NA	6	28	29	16	20	66	<1	NA -0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH9 BH9	0-0.2 0.5-0.9	F: Sandy Silt	Fine Fine	NA NA	NA NA	NA NA	<4 6	18 26	14 28	12 14	11 20	42 71	<1	<0.1 NA	<25 <25	<50 <50	160 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<0.05 <0.05
TP10	0.5-0.9	Silty Clay F: Silty Clay	Fine	NA NA	NA NA	NA NA	<4	16	10	11	8	24	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP10 - [LAB DUP]	0-0.2	Laboratory Duplicate	Fine	NA	NA NA	NA NA	<4	16	10	10	8	23	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP10	0.3-0.6	Silty Clay	Fine	NA	NA NA	NA NA	5	23	17	12	14	25	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP11	0-0.2	F: Silty Clay	Fine	NA	NA	NA	<4	18	12	11	9	24	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP11	0.4-0.6	Silty Clay	Fine	NA	NA	NA	7	30	25	16	19	47	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP12	0-0.2	F: Silty Clay	Fine	NA	NA	NA	<4	11	8	7	6	22	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP12	0.5-0.7	F: Silty Clay	Fine	NA	NA	NA	6	31	18	16	18	32	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP1	0-0.2	Duplicate of BH1	Fine	NA	NA	NA	5	21	14	15	11	31	<1	<0.1	<25	<50	150	<100	<0.2	<0.5	<1	<1	<0.05
SDUP2	0-0.2	Duplicate of BH3	Fine	NA	NA	NA	<4	17	11	11	9	56	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP3	0-0.2	Duplicate of BH2	Fine	NA	NA	NA	<4	18	13	10	10	21	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP3 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Fine	NA	NA	NA	NA	NA .	NA	NA .	NA	NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP4	0-0.2	Duplicate of BH4	Fine	NA	NA	NA	<4	13	11	7	8	34	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
Total Number of Samples	5			0	0	0	31	31	31	31	31	31	32	17	32	32	32	32	32	32	32	32	32
Maximum Value				NA	NA	NA	7	31	29	17	27	71	<pql< td=""><td><pql< td=""><td><pql< td=""><td>130</td><td>540</td><td>350</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>130</td><td>540</td><td>350</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>130</td><td>540</td><td>350</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	130	540	350	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>

Concentration above the SAC Concentration above the PQL

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH1	0-0.2	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH1	0.3-0.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH1	1.3-1.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH2	0-0.2	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH2	1-1.4	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH3	0-0.2	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH3	0.3-0.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH4	0-0.2	F: Clayey Silt	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH4	0.3-0.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH5	0-0.2	F: Silty Sand	Coarse	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	300	2800	50	85	70	105	20
BH5	0.3-0.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH6	0-0.5	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH6 - [LAB DUP]	0-0.5	Laboratory Duplicate	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH7	0-0.2	F: Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH7	0.2-0.7	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH8	0-0.2	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH8	0.8-1	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH9	0-0.2	F: Sandy Silt	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH9	0.5-0.9	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
TP10	0-0.2	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP10 - [LAB DUP]	0-0.2	Laboratory Duplicate	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP10	0.3-0.6	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
TP11	0-0.2	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP11	0.4-0.6	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
TP12	0-0.2	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP12	0.5-0.7	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
SDUP1	0-0.2	Duplicate of BH1	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
SDUP2	0-0.2	Duplicate of BH3	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
SDUP3	0-0.2	Duplicate of BH2	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
SDUP3 - [LAB DUP]	0-0.2	Laboratory Duplicate	Fine	NA	NA	NA							170		180	120	1300	5600	65	105	125	45	20
SDUP4	0-0.2	Duplicate of BH4	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20

TABLE S7

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

						HEAVY	METALS				P/	λHs		OC/OP	PESTICIDES		Total			TRH				BTEX CON	/IPOUNDS		1
						_					Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	PAHs		Endosulfans		Harmful	Scheduled			20 24	13 20	23 30	C ₁₀ -C ₃₆			benzene	Xylenes	l
PQL - Envirolab Servic	es		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste (T1		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
General Solid Waste S	CC1		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste	e CT2		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid Wast	e SCC2		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
BH1	0-0.2	F: Silty Clay	4	<0.4	18	13	13	<0.1	9	27	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	140	<100	140	<0.2	<0.5	<1	<1	Not Detected
BH1 - [LAB_DUP]	0-0.2	Laboratory Duplicate	4	<0.4	18	12	13	<0.1	10	26	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	270	110	380	<0.2	<0.5	<1	<1	NA NA
BH1	0.3-0.5	Silty Clay	7	<0.4 <0.4	25 27	16	16	<0.1	12	24 40	<0.05 <0.05	<0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50	<100	<100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	NA NA
BH2	1.3-1.5 0-0.2	Silty Clay F: Silty Clay	<4	<0.4	16	21 12	16 11	<0.1 <0.1	15 9	21	<0.05	<0.05 <0.05	NA <0.1	NA <0.1	<0.1	NA <0.1	<0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2	<0.5	<1 <1	<1 <1	NA Not Detected
BH2	1-1.4	Silty Clay	7	<0.4	29	21	17	<0.1	17	42	<0.05	<0.05	NA	NA	NA NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
BH3	0-0.2	F: Silty Clay	<4	<0.4	14	9	11	<0.1	8	49	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH3	0.3-0.5	Silty Clay	<4	<0.4	18	11	8	<0.1	11	19	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH4	0-0.2	F: Clayey Silt	<4	<0.4	14	11	8	<0.1	9	37	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH4	0.3-0.5	Silty Clay	5	<0.4	25	15	12	<0.1	17	23	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH5	0-0.2 0.3-0.5	F: Silty Sand	5	<0.4	10	9 12	7	<0.1	6	26 22	<0.05	<0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1	<0.1 NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1 <1	Not Detected
BH6	0.3-0.5	Silty Clay Sandy Silty Clay	<4 5	<0.4 <0.4	20 28	20	11 15	<0.1 <0.1	12 17	36	<0.05 <0.05	<0.05 <0.05	<0.1	<0.1	NA <0.1	NA <0.1	<0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	NA Not Detected
BH6 - [LAB_DUP]	0-0.5	Laboratory Duplicate	5	<0.4	28	20	16	<0.1	16	37	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
BH7	0-0.2	F: Sandy Silty Clay	5	<0.4	11	15	7	<0.1	11	65	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	85	370	360	815	<0.2	<0.5	<1	<1	Not Detected
BH7	0.2-0.7	Sandy Silty Clay	5	<0.4	25	22	14	<0.1	27	46	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH8	0-0.2	F: Silty Clay	<4	<0.4	23	15	16	<0.1	14	31	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH8	0.8-1	Sandy Silty Clay	6	<0.4	28	29	16	<0.1	20	66	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH9	0-0.2	F: Sandy Silt	<4	<0.4	18	14	12	<0.1	11	42	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	110	110	<0.2	<0.5	<1	<1	Not Detected
TP10	0.5-0.9 0-0.2	Silty Clay	<4	<0.4 <0.4	26 16	28 10	14	<0.1 <0.1	20 8	71 24	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
TP10 - [LAB DUP]	0-0.2	F: Silty Clay Laboratory Duplicate	<4	<0.4	16	10	11 10	<0.1	8	23	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100 <100	<100	<50	<0.2	<0.5	<1	<1	Not Detected NA
TP10	0.3-0.6	Silty Clay	5	<0.4	23	17	12	<0.1	14	25	<0.05	<0.05	NA	NA	NA NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
TP11	0-0.2	F: Silty Clay	<4	<0.4	18	12	11	<0.1	9	24	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP11	0.4-0.6	Silty Clay	7	<0.4	30	25	16	<0.1	19	47	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP12	0-0.2	F: Silty Clay	<4	<0.4	11	8	7	<0.1	6	22	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP12	0.5-0.7	F: Silty Clay	6	<0.4	31	18	16	<0.1	18	32	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP1	0-0.2	Duplicate of BH1	5	<0.4	21	14	15	<0.1	11	31	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	120	<100	120	<0.2	<0.5	<1	<1	NA NA
SDUP2 SDUP3	0-0.2 0-0.2	Duplicate of BH3	<4 <4	<0.4 <0.4	17 18	11 13	11 10	<0.1 <0.1	9 10	56 21	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	NA NA
SDUP3 - [LAB DUP]	0-0.2	Duplicate of BH2 Laboratory Duplicate	NA	VO.4	NA NA	NA	NA NA	NA	NA	NA NA	<0.05	<0.05	NA NA	<0.1	<0.1	<0.1	NA NA	<25	<50 <50	<100 <100	<100	<50 <50	<0.2	<0.5	<1	<1 <1	NA NA
SDUP4	0-0.2	Duplicate of BH4	<4	<0.4	13	11	7	<0.1	8	34	<0.05	<0.05	NA	NA	NA NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
																											1
Total Number of Sa	mples		31	31	31	31	31	31	31	31	32	32	17	18	18	18	17	32	32	32	32	32	32	32	32	32	12
Maximum Value			7	<pql< td=""><td>31</td><td>29</td><td>17</td><td><pql< td=""><td>27</td><td>71</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	31	29	17	<pql< td=""><td>27</td><td>71</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	27	71	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>85</td><td>370</td><td>360</td><td>815</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	85	370	360	815	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL

TABLE Q1
SOIL QA/QC SUMMARY

30.2 4	QC 50																																																											
			TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40 Benzene	Toluene	Ethylbenzene	m+p-xylene o-Xvlene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene Renzo(a)anthracene	Chrysene	Benzo(b.j+k)fluoranthen	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	HCB	alpha- BHC	gamma- BHC beta- BHC	Hebtachlor	delta-BHC	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	DDD-dd	Endosulfan II pp-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Azinphos-methyl (Guthic	Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS	Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	Zinc
		nvirolab SYD	25	50	100 1	100 0.2	2 0.5	1	2 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.	1 0.1	0.2	0.05	0.1	0.1	0.1	0.1 0	.1 0	.1 0.:	1 0.:	1 0.1	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	4	0.4	1 1	. 1	0.1	1	1
	PQL Er	nvirolab VIC	25	50	100 1	100 0.2	2 0.5	1	2 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.	1 0.1	0.2	0.05	0.1	0.1	0.1	0.1 0	.1 0	.1 0.:	1 0.:	1 0.1	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	4	0.4	1 1	. 1	0.1	1	1
Intra	BH1	0-0.2	<25	<50	190 <	:100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0	0.1 <0.	.1 <0	.1 <0.	1 <0.1	<0.1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	1 <0.	.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	4	<0.4	18 1	3 13	<0.1	9	27
laboratory	SDUP1	0-0.2	<25	<50	150 <	100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.1 <0	0.1 <	0.1 <0.	.1 <0	.1 <0.	.1 <0.1	<0.1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	:0.1 <0.	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	1 <0.	.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5	<0.4	21 1	.4 15	<0.1	. 11	31
duplicate	MEAN		nc	nc	170	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	a no	. nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	4.5	nc 1	.9.5 13	.5 14	nc	10	29
	RPD %		nc	nc	24%	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	a no	. nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	22%	nc 1	.5% 7°	% 149	6 nc	20%	14%
																																																		$\overline{}$										
Intra	BH3	0-0.2	<25	<50 <	<100 <	:100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.1 <0	0.1 <	0.1 <0.	.1 <0.	.1 <0.	.1 <0.1	<0.1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	1 <0.	.1 <0.	1 <0.1	1 <0.1	1 <0.1	. <0.1	<0.1	<0.1	<4	<0.4	14 5	11	<0.1	. 8	49
laboratory	SDUP2	0-0.2	<25	<50 <	<100 <	100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	- /	-	-	<4	<0.4	17 1	.1 11	<0.1	. 9	56
duplicate	MEAN		nc	nc	nc i	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	a no	. nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	nc	nc 1	.5.5 1	.0 11	. nc	8.5	52.5
	RPD %		nc	nc	nc i	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	ε nr	. nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	nc	nc 1	.9% 20	J% 0%	nc	12%	13%
																																																		$\overline{}$										
Inter	BH2	0-0.2	<25	<50 <	<100 <	:100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.1 <0	0.1 <	0.1 <0.	.1 <0.	.1 <0.	.1 <0.1	<0.1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	1 <0.	.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<4	<0.4	16 1	.2 11	<0.1	. 9	21
laboratory	SDUP3	0-0.2	<25	<50 <	<100 <	100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0	0.1 <0.	.1 <0	.1 <0.	1 <0.1	<0.1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	:0.1 <0.	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	1 <0.	.1 <0.	1 <0.1	<0.1	. <0.1	<0.1	<0.1	<0.1	<4	<0.4	18 1	3 10	<0.1	10	21
duplicate	MEAN		nc	nc	nc i	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	a ne	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	nc nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	nc	nc	17 12	5 10.5	5 nc	9.5	21
	RPD %		nc	nc	nc i	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	a no	. nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	nc	nc 1	.2% 8°	% 10%	6 nc	11%	0%
Inter	BH4	0-0.2	<25	<50 <	<100 <	:100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0	0.1 <0.	.1 <0.	.1 <0.	1 <0.1	. <0.1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	:0.1 <0.	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	:0.1 <0	1 <0.	.1 <0.	1 <0.1	<0.1	. <0.1	<0.1	<0.1	<0.1	<4	<0.4	14 1	.1 8	<0.1	9	37
laboratory	SDUP4	0-0.2	<25	<50 <	<100 <	:100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	-	-	- -	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	<4	<0.4	13 1	.1 7	<0.1	8	34
duplicate	MEAN		nc	nc	nc i	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	a ne	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	nc nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	nc	nc 1	.3.5 1	1 7.5	nc	8.5	35.5
	RPD %		nc	nc	nc i	nc no	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc r	nc r	nc no	c no	2 nc	. nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	c nc	nc	nc	nc	nc	nc	nc n	nc	no	nc	nc	nc	nc	nc	nc	nc	nc	/% 0°	% 13%	6 nc	12%	8%
Field	TB1	-	<25	<50 <	<100 <	100 <0.	.2 <0.5	<1	<2 <1	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.05	<0.1	<0.1	<0.1	-	-		-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	<4	<0.4	3 2	2	<0.1	<1	3
Blank	8/05/23																																																\bot											
																																																	\bot											
Field		hove µg/L 1	<10	<50 <	<100 <	:100 <1	l <1	<1	<2 <1	1 <0.2	2 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.2	<0.1	<0.1	<0.1	<0.1	-	-	- -	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	<0.05	<0.01 <0	J.01 0.	.5 <0.0	.3 <0.00C	05 <0.02	0.05
Rinsate	11/05/2	3																																																										
Trip	TS1		-	-	-	- 102	% 102%	102% 1	106% 104	4% -	-	-	-	-	-	-		- -	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-]	- 1	-			-	-	-
Spike	8/05/23																																																			1								

Result outside of QA/QC acceptance criteria

1. Heavy metals concentrations reported in mg/L

Appendix D: Borehole & Test Pit Logs

DSI Borehole & Test Pit Logs

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: SPIRAL AUGER R.L. Surface: ≈ 108.6m

Date: 19/9/23 **Datum:** AHD

Plant	Туре:	JK205			Logg	ged/Checked by: O.B./T.H.				
Groundwater Record	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		N = 24 6,10,14 N = 22 6,10,12	0		- CI-CH	ASPHALTIC CONCRETE: 100mm.t FILL: Silty clay, medium to high plasticity, brown, trace of igneous gravel and asphaltic concrete fragments. FILL: Silty clay, medium to high plasticity, red brown, trace of roots. Silty CLAY: medium to high plasticity, light brown.	w≈PL w≈PL w≈PL			SCREEN: 2.01kg 0.1-0.2m, NO FCF SCREEN: 3.17kg 0.2-0.6m, NO FCF SCREEN: 6.01kg 0.6-1.0m, NO FCF ALLUVIAL
ON 20/9/23 ————————————————————————————————————		N = 15 5,8,7	3-			as above, but light brown and grey.				GROUNDWATER MONITORING WELL
>		N = 10 5,5,5	5 - 		CI-CH	Silty sandy CLAY: medium to high plasticity, grey and orange brown, fine to medium grained sand.	w>PL			INSTALLED TO 5.6m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 5.6m TO 3.0m. CASING 3.0m TO 0m. 2mm SAND FILTER PACK 5.6m TO 2.4m. BENTONITE SEAL 2.4m TO 0.1m. COMPLETED WITH A CONCRETED GATIC COVER.
				-		END OF BOREHOLE AT 6.0m				-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Date: 19/9	9/23						D	atum:	AHD
Plant Type	: JK205			Logo	ged/Checked by: O.B./T.H.				
Groundwater Record ES ASS ASS ASS ASS ASS ASS ASS ASS ASS	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION	N = 11	0 ×		CI-CH	\ASPHALTIC CONCRETE: 20mm.t FILL: Silty clay, medium to high plasticity, orange brown, trace of \igneous gravel and asphalt. Silty CLAY: medium to high plasticity, brown.	w≈PL w≈PL			SCREEN: 10.71kg - 0.02-0.1m, NO FCF SCREEN: 11.01kg 0.1-0.4m, NO FCF ALLUVIAL
	3,5,6	1 -			END OF BOREHOLE AT 0.95m				-
		-							-
		2-							-
		3 –							-
		- - -							-
		4							-
		5 —							- - -
		-							-
		6 -							-
		7							_

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Date	: 19/9/	23						D	atum:	AHD
Plan	t Type:	JK205			Logg	ged/Checked by: O.B./T.H.				
Groundwater Record	ES ASS ASB SAL SAL	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0		-	ASPHALTIC CONCRETE: 20mm.t / FILL: Silty clay, medium to high plasticity, brown, trace of igneous gravel and asphaltic concrete fragments.	w≈PL			SCREEN: 8.61kg 0.02-0.1m, NO FCF SCREEN: 11.11kg 0.1-0.6m, NO FCF
		N = 15 3,6,9	1 -		CI-CH	Silty CLAY: medium to high plasticity, brown.	w≈PL			HYDROCARBON ODOUR ALLUVIAL
		N = 22 5,11,11				but light orange brown. Silty CLAY: medium to high plasticity, brown.				-
ON 20/9/23 ————————————————————————————————————		N = 7 2,4,3	2 - 3 - 4 -			as above, but light brown.				GROUNDWATER
•		N = 11 3,7,4	5 -				w>PL			MONITORING WELL INSTALLED TO 5.2m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 5.2m TO 3.0m. CASING 3.0m TO 0m. 2mm SAND FILTER PACK 5.2m TO 1.6m. BENTONITE SEAL 1.6m TO 0.1m. COMPLETED WITH A CONCRETED GATIC COVER.
			7 -	-		END OF BOREHOLE AT 6.0m				- - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Datum: 19/9/23

Date: 19	9/9/23						D	atum:	AHD
Plant Ty	pe: JK205			Logg	jed/Checked by: O.B./T.H.				
Groundwater Record ES CAMBLES	, , 	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	N = 20 3,8,12 N > 15 5,15,0/ 70mm REFUSAL	1 -/		CI-CH	FILL: Silty clay, medium to high plasticity, brown, trace of roots and root fibres. Silty CLAY: medium to high plasticity, brown, trace of roots. as above, but light brown.	w≈PL w≈PL			GRASS COVER SCREEN: 11.12kg 0-0.1m, NO FCF ALLUVIAL
ON 20/9/23 ————————————————————————————————————	N = 13 5,6,7	3 -			Silty CLAY: medium to high plasticity, grey and orange brown, trace of fine to medium grained sand, and roots.				GROUNDWATER MONITORING WELL INSTALLED TO 5.2m. CLASS 18 MACHINE
	N = 8 3,4,4	5 -/			Silty CLAY: medium to high plasticity, brown mottled grey and orange. END OF BOREHOLE AT 6.0m	w>PL			SLOTTED 50mm DIA. PVC STANDPIPE 5.2m TO 3.0m. CASING 3.0m TO 0m. 2mm SAND FILTER PACK 5.2m TO 2.0m. BENTONITE SEAL 2.0m TO 0.1m. COMPLETED WITH A CONCRETED GATIC COVER.
		7							- - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Plant Type: JK205 Logged/Checked by: O.B./T.H. DESCRIPTION DESCRIPT	JOD NO.: E35821PR	Wethod: SPIRAL AUGER	R.L. Surrace: ≈ 108.8m
DESCRIPTION Section Part Date: 19/9/23		Datum: AHD	
DRY ON COMPLETION N > 20 N > 20 N =	Plant Type: JK205	Logged/Checked by: O.B./T.H.	
DRY ON COMPLET TION N > 20 8, 12.8/ Omm REFUSAL 1 - SCREEN: 3.01kg 0.05-0.3m, NO FCF sphaltic concrete fragments. Sity CLAY: medium to high plasticity, orange brown, race of angebrown, race of sphaltic concrete fragments. Sity CLAY: medium to high plasticity, orange brown, race brown. 2 - STREEN: 3.01kg 0.05-0.3m, NO FCF ALLUVIAL ALLUVIAL 3 - SCREEN: 3.01kg 0.05-0.3m, NO FCF ALLUVIAL 4 - STREEN: 3.01kg 0.05-0.3m, NO FCF ALLUVIAL 5 - STREEN: 3.01kg 0.05-0.3m, NO FCF ALLUVIAL 5 - SCREEN: 3.01kg 0.05-0.3m, NO FCF ALLUVIAL 5 - SCR	Groundwater Record ES ASB SAMPLES SAL DB Field Tests Graphic Log	Unified Classification MOITPINDSED CONTROL CON	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
TION N > 20	DRY ON 0	ASPHALTIC CONCRETE: 50mm.t	
END OF BOREHOLE AT 0.8m	COMPLE- TION N > 20 8,12,8/	CI-CH plasticity, orange brown, trace of asphaltic concrete fragments. Silty CLAY: medium to high plasticity, orange brown.	0.05-0.3m, NO FCF
	DEELIGAL	END OF BOREHOLE AT 0.8m	
·	2- 2- 3- 3- 3- 5-		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.7m

Date: 21/9/23					D	atum:	AHD
Plant Type: E	XCAVATOR	R Logg	ged/Checked by: O.B./T.H.				
Groundwater Record ES ASS ASS SAMPLES SAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	ded 0 1 1 1 1 1 1 1 1 1	Grap Duiff	FILL: Silty sandy clay, medium to high plasticity, light brown, fine to medium grained sand, trace of roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of root fibres. END OF TEST PIT AT 1.1m		Stre Rel.	Han Pen Pen Rea Rea	GRASS COVER SCREEN: 14.12kg 0-0.1m, NO FCF SCREEN: 15.01kg 0.1-0.6m, NO FCF ALLUVIAL
	7 -						-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.8m

Job No.: E35	5821PR	Meth	nod: TEST PIT		R	.L. Sur	face: ≈ 108.8m
Date: 21/9/23	3				D	atum:	AHD
Plant Type:	EXCAVATOR	R Log	ged/Checked by: O.B./T.H.				
Groundwater Record ES ASB SAMPLES SAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0 - - -		FILL: Silty clay, medium to high plasticity, brown, trace of roots and root fibres. FILL: Silty clay, medium to high plasticity, red brown, trace of root fibres.	w <pl w≈PL</pl 			GRASS COVER SCREEN: 12.61kg 0-0.1m, NO FCF SCREEN: 14.01kg 0.1-0.4m, NO FCF SERVICE CONDUIT
	1 -		END OF TEST PIT AT 0.9m				ENCOUNTERED AT 0.8m

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

E25021DD

Job No. : E35821PR	Method: TEST PIT	R.L. Surface: ≈ 108.8m
Date : 21/9/23		Datum : AHD
Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.	
Groundwater Record ES ASS ASS SAL DB Field Tests Graphic Log	Unified Classification NOILAINDSAID NOILAINDSAID NOILAINDSAID	Strength/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.) sylvanaba
DRY ON COMPLE-	FILL: Silty clay, medium to high	w≈PL GRASS COVER
TION	\root fibres. Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	w≈PL SCREEN: 12.15kg 0-0.1m, NO FCF - ALLUVIAL
	END OF TEST PIT AT 0.7m	-
		_
		-
2-		-
		-
		-
3 –		
		-
		-
4-		-
		-
		-
5 –		
		-
6-		
5 7		

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

E25021DD

Job No.: E35821PR			Meth	Method: TEST PIT			R.L. Surface: ≈ 108.6m		
Date: 21/9/2	3					D	atum:	AHD	
Plant Type:	EXCAVA [®]	TOR	Logg	ged/Checked by: O.B./T.H.					
Groundwater Record ES ASS ASS SAMPLES SAL DB	Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLE-		0 💥	×	FILL: Silty clay, medium to high plasticity, orange brown, with fine to	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER	
TION			CI-CH	medium grained sand, trace of ash, slag, roots and root fibres. Silty CLAY: medium to high plasticity,	w≈PL			SCREEN: 11.45kg 0-0.1m, NO FCF ALLUVIAL	
			1	red brown, trace of root fibres.				-	
		1 -		END OF TEST PIT AT 0.9m					

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

Plant Type: EXCAVATOR Logged/Checked by: O.B./T.H. DESCRIPTION DESC	JOB NO.: LOGOZIFIX MELIIOG. 1231	1 11		ace. ≈ 100.7111
Begin by the property of the part of the p	Date: 21/9/23		Datum:	AHD
DRY ON COMPLETION TION Total To	Plant Type: EXCAVATOR Logged/Check	ed by: O.B./T.H.		
DRY ON COMPLE TION CICHCH CI	Groundwater Record ES ASS ASS ASS BASB SAMPLES SABLES Graphic Log Graphic Log Classification	Moisture Condition/ Weathering	Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks
TION TION TION TOTAL Transports, roots and root fibres. Silly CLAY: medium to high plasticity, red brown. END OF TEST PIT AT 0.8m TOTAL TRANSPORTS ALLUVIAL TOTAL TRANSPORTS ALL	DRY ON FILL: Silty c	ay, medium to high w≈PL	<u> </u>	GRASS COVER
END OF TEST PIT AT 0.8m	TION CI-CH (fragments, r Silty CLAY:	oots and root fibres. / w~PI		0-0.1m, NO FCF SCREEN: 13.02kg
		ST PIT AT 0.8m		ALLUVIAL
	2- 2- 3- 3- 3- 4- 4- 5-			

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.8m

Date: 21/9/23 **Datum:** AHD

Date: 21/9/23 Datum: AHD									
Plant Type	: EXCAV	/ATOR		Logg	ged/Checked by: O.B./T.H.				
Groundwater Record ES ASS SAMPLES SAI	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION		0 X			FILL: Silty clay, medium to high plasticity, brown, trace of brick fragments, roots and root fibres.	w≈PL			GRASS COVER SCREEN: 11.11kg
				CI-CH	Silty CLAY: medium to high plasticity, red brown.	w≈PL			0-0.1m, NO FCF SCREEN: 13.36kg 0.1-0.4m, NO FCF ALLUVIAL
		1 -			END OF TEST PIT AT 0.9m				- ALLOVIAL
		-							-
		2 —							-
		-							-
		2							-
		3-							-
									-
		4 –							-
		-							-
		5 —							-
		-							-
		-							-
		6 –							-
		-							-
		7_							

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.6m

Date: 21/9/23		Datum: AHD
Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.	
Groundwater Record ES ASS ASS SAL DB Field Tests Graphic Log	Unified Classification Noither Moisture Condition/	Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLETION	FILL: Silty clay, medium to high plasticity, brown, trace of plastic fragments, roots and root fibres. CI-CH Silty CLAY: medium to high plasticity, w≈Pl	GRASS COVER - SCREEN: 12.12kg
	red brown.	- SCREEN: 14.01kg - 0.1-0.4m, NO FCF - ALLUVIAL
1-	END OF BOREHOLE AT 0.9m	-
		-
2-		
		-
3-		-
		-
4-		-
		-
		-
5 -		-
		-
6 -		
		-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.5m

JOD NO.: E35821PR	wetnoa:	IESI PII				race: ≈ 108.5m
Date: 22/9/23				D	atum:	AHD
Plant Type: EXCAVATO	OR Logged/C	Checked by: O.B./T.H.				
Groundwater Record ES ASS ASS ASB SAMPLES SAL DB Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION 1 1 1 1 1 1 1 1 1 1 1 1 1	CI-CH Coots Silty red b	: Silty clay, medium to high ticity, brown, trace of igneous el, ceramic and plastic fragments, s and root fibres. CLAY: medium to high plasticity, brown. OF TEST PIT AT 0.9m	w≈PL w≈PL	St. Re	He Pe	GRASS COVER SCREEN: 13.89kg 0-0.1m, NO FCF 0.3m: IRRIGATION PIPES ENCOUNTERED ALLUVIAL
;						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.8m

Date:	21/9/2	23						D	atum:	AHD
Plant	Type:	EXCA	/ATOI	₹	Logg	ged/Checked by: O.B./T.H.				
Groundwater Record	ASS ASB ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0 -			FILL: Silty clay, medium to high plasticity, brown, trace of igneous gravel, fine to medium grained sand, ash, roots and root fibres.	w <pl< th=""><th></th><th></th><th>GRASS COVER SCREEN: 13.81kg 0-0.1m, NO FCF</th></pl<>			GRASS COVER SCREEN: 13.81kg 0-0.1m, NO FCF
			-		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	w <pl< td=""><td></td><td></td><td>SCREEN: 14.33kg 0.1-0.5m, NO FCF ALLUVIAL</td></pl<>			SCREEN: 14.33kg 0.1-0.5m, NO FCF ALLUVIAL
				-		END OF TEST PIT AT 1.0m				-
			-							-
			2 -							-
			-							-
			3 -							-
			-	_						-
			4 -							-
			-							-
			5 -	-						-
			-							-
			6 -							-
			-							-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.6m

Job No.: E35821PR			Method: TEST PIT R.			R.L. Surface: ≈ 108.6m		
Date: 21/9/23					Datum	: AHD		
Plant Type: E>	KCAVATOF	R Lo	gged/Checked by: O.B./T.H.					
	Field Tests Depth (m)	Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density Hand Penetrometer	Remarks Remarks		
DRY ON COMPLE-TION	-		FILL: Silty clay, medium to high plasticity, brown, trace of igneous gravel, roots and root fibres.	w≈PL		GRASS COVER SCREEN: 12.24kg 0-0.1m, NO FCF SCREEN: 13.95kg		
	1-	CI-C	SH Silty CLAY: medium to high plasticity, light brown, trace of igneous gravel.	w≈PL		0.1-0.6m, NO FCF ALLUVIAL		
			END OF TEST PIT AT 1.3m			-		
	2 2 3 3 5 6 7							

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.8m

Job No. : E35821PR		Meth	Method: TEST PIT			R.L. Surface: ≈ 108.8m		
Date : 21/9/23					D	atum:	AHD	
Plant Type: EXCAV	ATOR	Logg	ged/Checked by: O.B./T.H.					
Groundwater Record ES ASS ASS ASS ASS CASS ASS ASS ASS ASS A	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLETION	2-	CI-CH	FILL: Silty clay, low to medium plasticity, light brown, with fine to medium grained sand, trace of igneous gravel. Silty CLAY: medium to high plasticity, red brown, trace of root fibres. END OF TEST PIT AT 1.0m	w <pl th="" w<pl<=""><th>σ α</th><th>Τα. κ</th><th>GRASS COVER SCREEN: 11.98kg 0-0.1m, NO FCF SCREEN: 12.22kg 0.1-0.5m, NO FCF ALLUVIAL</th></pl>	σ α	Τα. κ	GRASS COVER SCREEN: 11.98kg 0-0.1m, NO FCF SCREEN: 12.22kg 0.1-0.5m, NO FCF ALLUVIAL	
	5 — — — — — — — — — — — — — — — — — — —						- - - - - -	

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

000 11011	. L33021F	13	MELL	iou. ILSI FII		11	.L. Juii	iace. ≈ 100.7111
Date: 22	2/9/23					D	atum:	AHD
Plant Ty	pe: EXCA	VATOR	Logg	ged/Checked by: O.B./T.H.				
	ASB SAMPLES SAL DB	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE		0		FILL: Silty clay, medium to high plasticity, brown, trace of igneous	w≈PL			GRASS COVER
TION			CI-CH	gravel, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	w≈PL			SCREEN: 13.61kg 0-0.1m, NO FCF SCREEN: 14.01kg
				END OF TEST PIT AT 0.8m				0.1-0.3m, NO FCF ALLUVIAL
		1- - 2- 3- 3- 5- 6-						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

Date:	22/9/2	23						D	atum:	AHD
Plant	Type:	EXCA	/ATOF	₹	Logg	ged/Checked by: O.B./T.H.				
Groundwater Record	ES ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			-			FILL: Silty clay, low to medium plasticity, brown, with fine to medium grained sand, trace of roots and root fibres.	w <pl< td=""><td></td><td></td><td>MULCH COVER SCREEN: 12.85kg 0-0.1m, NO FCF</td></pl<>			MULCH COVER SCREEN: 12.85kg 0-0.1m, NO FCF
			- - 1-		CI-CH	Silty CLAY: medium to high plasticity, red brown.	w≈PL			SCREEN: 12.99kg 0.1-0.5m, NO FCF ALLUVIAL
			_			END OF TEST PIT AT 1.2m				-
			-							-
			2-							_
			-							-
			-							-
			-							-
			3 -							-
			-							-
			-							-
			4 -							-
			-							-
			-							-
			5 -							_
			-							-
			-							-
			6 -							_
			-							-
			-							-
			7							-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

Jor	NO.: E	0002171	`		Metri	100: 1E31 PH		K	.L. Suri	race: ≈ 108.7m
Date: 21/9/23						D	atum:	AHD		
Pla	nt Type:	EXCA\	/ATOF	₹	Logg	ged/Checked by: O.B./T.H.				
Groundwater Record	ES ASS SAL SAL DR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY C COMPL TION	N = =		3		CI-CH	FILL: Silty clay, medium to high plasticity, brown, trace of fine to medium grained sand, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of root fibres. END OF TEST PIT AT 0.9m	w≈PL w≈PL			GRASS COVER SCREEN: 11.01kg 0-0.1m, NO FCF SCREEN: 12.11kg 0.1-0.35m, NO FCF ALLUVIAL

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.8m

300 NO L33021FIX	Wethou. ILST FIT	K.L. Surface. ≈ 100.011
Date: 22/9/23		Datum : AHD
Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.	
Groundwater Record ES ASB ASB SAMPLES SAL Depth (m) Graphic Log	Unified Classification MOITPINDSED	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLET	FILL: Silty clay, medium to high	w≈PL GRASS COVER
TION	plasticity, brown, with fine to medium CI-CH grained sand, trace of roots and root fibres. Silty CLAY: medium to high plasticity,	w≈PL SCREEN: 14.01kg
	brown. END OF TEST PIT AT 0.8m	
1 -		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

Date: 22/9/23	Datum: AHD			
Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.			
Groundwater Record ES ASB ASB SAMPLES SAL Depth (m) Graphic Log	Unified Classification Moisture Condition/ Weathering Strength/	Rel. Density Hand Penetrometer Readings (kPa.) sylvanae		
DRY ON COMPLE-TION	FILL: Silty clay, low to medium plasticity, brown, trace of roots and root fibres. CI-CH Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	GRASS COVER SCREEN: 12.45kg 0-0.1m, NO FCF SCREEN: 12.98kg 0.1-0.4m, NO FCF		
1-	END OF TEST PIT AT 0.9m	ALLUVIAL		
2-		-		
3-		- - -		
		-		
4-		-		
5 -		- - -		
		-		
		-		
		-		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: SPIRAL AUGER R.L. Surface: ≈ 108.6m

Date : 19/9/23			Datum: AHD				
Plant Type: JK2	205	Logg	ged/Checked by: O.B./T.H.				
	Frieid Lests Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	- GI-CH	GRAVEL: medium to coarse grained, sub-angular, igneous, grey. FILL: Silty clay, medium to high plasticity, red brown, trace of igneous gravel. Silty CLAY: medium to high plasticity, brown. END OF BOREHOLE AT 0.95m	w≈PL w≈PL			SCREEN: 2.45kg _\0.05-0.25m, NO FCF _\ALLUVIAL

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.8

	JOD NO L		`		MELL	ou. ILSI FII				ace. ≈ 100.0
Date: 22/9/23								D	atum:	-
	Plant Type:	EXCAV	/ATOF	3	Logg	ged/Checked by: O.B./T.H.				
	Groundwater Record Record ASS ASS ASS ASS ASS ASS ASS ASS ASS AS	Field Tests	Depth (m)	X X Graphic Log X	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	DRY ON COMPLE- TION		-		CI-CH	FILL: Silty clayey sand, fine to medium grained, light brown, trace of roots and root fibres. Silty sandy CLAY: medium to high plasticity, brown, fine to medium grained sand.	M w≈PL			GRASS COVER SCREEN: 14.81kg 0-0.1m, NO FCF 0.1m: IRRIGATION
			1	Z K /		END OF TEST PIT AT 0.8m				PIPE ALLUVIAL

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.8m

	•	mounour 1201111	-	
Date: 22/9/23			Datum:	AHD
Plant Type: EXCAV	/ATOR	Logged/Checked by: O.B./T.H.		
Groundwater Record ES ASS SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification NOITHINDSED NOITHINDSED	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	1 - 2 - 3 - 4 - 5 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7	FILL: Silty clay, medium to high plasticity, brown, with fine to medium grained sand, trace of roots and root fibres. Silty CLAY: medium to high plasticity, red brown. END OF TEST PIT AT 0.8m	w≈PL w≈PL	GRASS COVER SCREEN: 15.01kg 0-0.1m, NO FCF SCREEN: 14.95kg 0.1-0.3m, NO FCF ALLUVIAL

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

Date	: 21/9/2	23			Datum: AHD					
Plant	Type:	EXCA	/ATOI	3	Logg	ged/Checked by: O.B./T.H.				
	ASS ASB ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0			FILL: Silty clay, medium to high plasticity, light brown, trace of bark mulch, roots and root fibres.	w≈PL			MULCH COVER SCREEN: 10.91kg
l lion					CI-CH	Silty CLAY: medium to high plasticity, red brown.	w≈PL			0-0.1m, NO FCF SCREEN: 13.10kg 0.1-0.4m, NO FCF
			1 -			END OF TEST PIT AT 0.9m				ALLUVIAL
										-
				_						-
			2 -							_
										_
			3 -							_
										_
										-
				_						-
			4 -							_
										_
			5 -							_
										_
				-						-
			6 -							_
										-
										-
			7_							

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.8m

			302 IF I	`		MELL	ou. ILSI FII				ace. ≈ 100.0111
	Date:	22/9/2	23						D	atum:	AHD
	Plant 1	Гуре:	EXCAV	/ATOF	3	Logg	ged/Checked by: O.B./T.H.				
	Groundwater Record ES	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	DRY ON COMPLE-			0			FILL: Silty clay, medium to high plasticity, brown, trace of plastic	w <pl< th=""><th></th><th></th><th>GRASS COVER</th></pl<>			GRASS COVER
	TION			-		CI-CH	fragments, roots and root fibres. Silty CLAY: medium to high plasticity, red brown.	w≈PL			SCREEN: 11.90kg 0-0.1m, NO FCF SCREEN: 12.15kg 0.1-0.3m, NO FCF
				1 —			END OF TEST PIT AT 0.8m				ALLUVIAL
				1 —							
				6							-
5 1								i l			

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

Plant Type: EXCAVATOR Logged/Checked by: O.B./T.H. DESCRIPTION DESC	JOB NO L33021FIX	Wethou. ILST FIT	K.L. Surface. ≈ 100.7111
BERY ON TOO BY A STATE OF THE PRINCIPLE	Date : 22/9/23		Datum : AHD
DRY ON COMPLETION CICH 1 CICH Sity CLAY: medium to high plasticity, red brown, trace of roots and your red brown, trace of root fibres. Sity CLAY: medium to high plasticity, red brown, trace of root fibres. Sity CLAY: medium to high plasticity, red brown, trace of root fibres. Sity CLAY: medium to high plasticity, red brown, trace of root fibres. END OF TEST PIT AT 0.8m GRASS COVER SCREEN: 11.01kg (9.0-1m, No TecF SCREEN: 12.2kg) (0.1-0.3m, NO FCF ALLLUVIAL) 4 4 4 4 4 4 4 4 5 - 5 - - - - - - - - - -	Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.	
DRY ON COMPLE TION CCHCH CICH Sity CLAY: medium to high plasticity, red brown, trace of root fibres. END OF TEST PIT AT 0.8m C2- 1- 2- 4- 3- 3- 3- 5- 5- 10 CRASS COVER GRASS COVER	Groundwater Record Record ASS ASB SAL DB Field Tests Depth (m) Graphic Log	Unified Classification DESCRIPTION OITH	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.) sylve was sylve sylv
TION CI-CH voot fibres. Silly CLAY: medium to high plasticity, red brown, trace of root fibres. END OF TEST PIT AT 0.8m SCREEN: 11.01kg (0-0.1m, No FCF SCREEN: 12.23kg (0.1-0.3m, NO FCF ALLUVIAL) STORE THE STREET PIT AT 0.8m 4- 4- 5- 5- 5- 5- 5- 6- 7- 8- 8- 8- 8- 9- 1- 1- 1- 1- 1- 1- 1- 1- 1	DRY ON O O O O O O O O O O O O O O O O O O	FILL: Silty clay, medium to high	w≈PL GRASS COVER
END OF TEST PIT AT 0.8m	TION	CI-CH root fibres. Silty CLAY: medium to high plasticity,	0-0.1m, NO FCF SCREEN: 12.23kg
		END OF TEST PIT AT 0.8m	U.1-0.3m, NO FCF ALLUVIAL
	2- 2- 3- 3- 4- 5-		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 109.0m

Date: 21/9/23		Datum: AHD
Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.	
Groundwater Record ES ASS ASS ASS SAL Depth (m) Graphic Log	Unified Classification NOITHINDSED	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLETION	FILL: Silty clay, medium to high plasticity, red brown, trace of roots and root fibres.	w≈PL GRASS COVER SCREEN: 12.48kg
	CI-CH Silty CLAY: medium to high plasticity, brown.	w≈PL 0-0.1m, NO FCF SCREEN: 13.10kg 0.1-0.4m, NO FCF ALLUVIAL
	END OF TEST PIT AT 1.1m	
		-
		-
		-
3-		
		-
4-		
		-
5 —		
		-
6 -		
7		

OPYRIGHT

Log No. TP129 1/1 SDUP2: 0-0.2m

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.8m

300 No.: L33021FK	Wethou. ILST FIT	K.L. Sullace. ≈ 100.0III
Date: 22/9/23		Datum: AHD
Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.	
Groundwater Record ES ASS ASS SAL DBL Field Tests Graphic Log	Unified Classification NOITHINDSEN	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Penetrometer Readings (kPa.)
DRY ON COMPLE-TION	FILL: Silty clay, medium to high plasticity, brown, trace of roots and root fibres.	w≈PL GRASS COVER SCREEN: 12.05kg
	CI-CH Silty CLAY: medium to high plasticity, brown.	W≈PL \ \ \ \ \ \ \ \ \ \ \ \ \
	END OF TEST PIT AT 1.0m	
		-
		_
		-
3-		-
		-
4 –		_
		-
		-
5 -		
6-		
		-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.8m

Deta: 22/0/22	moniou.			-4	
Date: 22/9/23			U	atum: -	
Plant Type: EXCAVA	IOR Logged/C	Checked by: O.B./T.H.			
Groundwater Record ES ASS ASS ASS ASS ASS ASS Field Tests	Depth (m) Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density	Hand Penetrometer Readings (kPa.) sylvemed	
DRY ON COMPLE-TION	CI-CH Grave Silty red b	c: Silty clay, medium to high ticity, brown, trace of igneous rel, roots and root fibres. CLAY: medium to high plasticity, brown. O OF TEST PIT AT 0.7m	w≈PL w≈PL	GRASS COVER SCREEN: 14.81k 0-0.1m, NO FCF ALLUVIAL	ιg
	1 -			-	
	2-			- - -	
	3-				
	4-				
	5 -			-	
	6 –			-	
	7_			-	

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.7m

Job No.: E35821PR		Method: TEST PIT			R.L. Surface: ≈ 108.7m		
Date: 22/9/23		Datum: AHD					
Plant Type: EXCAVAT	ΓOR Log	Logged/Checked by: O.B./T.H.					
	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET	0	FILL: Silty clay, medium to high plasticity, brown, trace of roots and	w≈PL			GRASS COVER	
TION	CI-CH	root fibres. Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	w≈PL			SCREEN: 13.81kg 0-0.1m, NO FCF - SCREEN: 14.01kg	
		END OF TEST PIT AT 0.8m				0.1-0.3m, NO FCF ALLUVIAL	
	1 — 2 — 2 — 3 — 4 — 4 — 5 — 6 — 6 — — — — — — — — — — — — — —						
	7_						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 108.8m

300 NO.: L3302 IF K	Wethod. ILST FIT	K.L. Sullace. ≈ 100.011		
Date: 22/9/23	Datum: AHD			
Plant Type: EXCAVATOR	Logged/Checked by: O.B./T.H.			
Groundwater Record ES ASS ASS SAL DEPT Field Tests Graphic Log	Unified Classification NOITPINDSED NOITPINDSED	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)		
DRY ON 0	FILL: Silty clay, medium to high	w≈PL GRASS COVER		
DRY ON COMPLE-TION	CI-CH plasticity, brown, trace of roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	w≈PL SCREEN: 14.50kg 0-0.1m, NO FCF - ALLUVIAL		
	END OF TEST PIT AT 0.7m	-		
1 –		_		
		-		
		-		
		-		
		-		
		-		
3 –				
		-		
4 —		-		
		-		
		-		
5-				
		-		
6-				
. 				
7				

DPYRIGHT

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)			
Very Soft (VS)	≤25	≤ 12			
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25			
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50			
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100			
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200			
Hard (Hd)	> 400	> 200			
Friable (Fr)	Strength not attainable – soil crumbles				

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 77 77 77 7 77 77 77 77 77 QUARTZITE PEAT AND HIGHLY ORGANIC SOILS (Pt)

OTHER MATERIALS

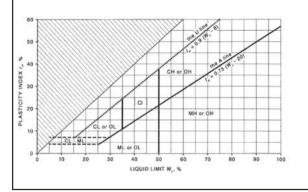
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Classification		
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>	
rsize fract	ਾਉਂ of coarse fraction is larger ਪ੍ਰੇਤ than 2.36mm		Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
luding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt	
of sail exclu		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay	
than 65% eater thar	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu > 6 1 < Cc < 3	
ioi (mare	of coarse fraction is smaller than	is smaller than little or no fines not enough fines to bind coarse grains, no dry strength		Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
Carse grained soil (more than 65% of soil excluding oversize fraction is greater than 0.075mm)	2.36mm)			'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty		
Coars		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A	

		Group			Laboratory Classification		
Majo	Major Divisions		Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
Bulpr	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ainedsoils (more than 35% of soil excl oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
in 35% ss than		OL Organic silt		Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
inegainedsoils (more than 35% of soil excluding oversize fraction is less than 0,075mm)		OH Organic clay of medium to high plasticity, organic silt		Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record		Standing water level	. Time delay following compl	etion of drilling/excavation may be show	n.		
	—с—	Extent of borehole/t	Extent of borehole/test pit collapse shortly after drilling/excavation.				
	•	Groundwater seepa	ge into borehole or test pit n	oted during drilling or excavation.			
Samples	ES	•	epth indicated, for environm				
	U50		diameter tube sample taken				
	DB		le taken over depth indicate				
	DS	_	sample taken over depth ind				
	ASB	•	er depth indicated, for asbes				
	ASS	· ·	er depth indicated, for acid s				
	SAL	•	er depth indicated, for salinit				
	PFAS	Soil sample taken ov	er depth indicated, for analy	sis of Per- and Polyfluoroalkyl Substances	S.		
Field Tests	N = 17 4, 7, 10	figures show blows p		tween depths indicated by lines. Indivi isal' refers to apparent hammer refusal w			
	N _c = 5 7 3R	figures show blows p	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	VNS = 25	Vane shear reading i	Vane shear reading in kPa of undrained shear strength.				
	PID = 100	_	Photoionisation detector reading in ppm (soil sample headspace test).				
Moisture Condition	w > PL	Moisture content es	Moisture content estimated to be greater than plastic limit.				
(Fine Grained Soils)	w≈ PL	Moisture content es	Moisture content estimated to be approximately equal to plastic limit.				
	w < PL	Moisture content es	Moisture content estimated to be less than plastic limit.				
	w≈LL		Moisture content estimated to be near liquid limit.				
	w > LL	Moisture content es	timated to be wet of liquid li	nit.			
(Coarse Grained Soils)	D	DRY – runs free	DRY – runs freely through fingers.				
	M						
	W	WET – free water visible on soil surface.					
Strength (Consistency)	VS	VERY SOFT – un	confined compressive streng	gth ≤ 25kPa.			
Cohesive Soils	S	SOFT – un					
	F	FIRM – un	,				
	St	STIFF – un	confined compressive streng	gth > 100kPa and ≤ 200kPa.			
	VSt	VERY STIFF – un	confined compressive streng	gth > 200kPa and ≤ 400kPa.			
	Hd	HARD – un	confined compressive streng	gth > 400kPa.			
	Fr	FRIABLE – str	ength not attainable, soil cru	imbles.			
	()	Bracketed symbol is assessment.	ndicates estimated consiste	ncy based on tactile examination or o	other		
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)			
(Cohesionless Soils)	VL	VERY LOOSE	≤ 15	0-4			
	L	LOOSE	> 15 and ≤ 35	4-10			
	MD	MEDIUM DENSE	> 35 and ≤ 65	10 – 30			
	D	DENSE	> 65 and ≤ 85	30 – 50			
	VD	VERY DENSE	> 85	>50			
	()	Bracketed symbol in	dicates estimated density ba	Bracketed symbol indicates estimated density based on ease of drilling or other assessment.			

Log Column	Symbol	Definition					
Hand Penetrometer Readings	300 250		Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				
Remarks	'V' bit	Hardened steel	'V' shaped bit.				
	'TC' bit	Twin pronged to	ungsten carbide bit.				
	T ₆₀	Penetration of a without rotation	nuger string in mm under static load of rig applied by drill head hydraulics n of augers.				
	Soil Origin	The geological o	rigin of the soil can generally be described as:				
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 				
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 				
		ALLUVIAL	– soil deposited by creeks and rivers.				
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 				
		MARINE	 soil deposited in a marine environment. 				
		AEOLIAN	 soil carried and deposited by wind. 				
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 				
		LITTORAL	– beach deposited soil.				

Classification of Material Weathering

Term	Abbre	viation	Definition		
Residual Soil	RS		Material is weathered to such an extent that it has soil properties. Mas structure and material texture and fabric of original rock are no longer visible but the soil has not been significantly transported.		
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes.	

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength				
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index IS ₍₅₀₎ (MPa)	Field Assessment			
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.			
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.			
Medium Strength	M	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.			
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.			
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.			
Extremely High Strength	EH	> 200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.			

PSI Borehole & Test Pit Logs

SDUP1: 0-0.2m

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.7m

Job No.: 35821BF					Method: SPIRAL AUGER R.L. Surface: ≈ 108.7				ace: ≈ 108.7m	
Date:	9/5/2	23			Datum: AHD					
Plant	Туре	: HANJII	N DB8	}	Logg	ged/Checked by: C.S.Y./O.F.				
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET			0			FILL: Silty clay, low to medium plasticity, brown, trace of fine grained	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER
ION		N > 20 8,11,9/ 50mm REFUSAL	- - 1 – -		CI-CH	igneous gravel, and root fibres. Silty CLAY: medium to high plasticity, brown and red brown, trace of fine grained sand, and root fibres. Silty CLAY: medium to high plasticity, brown, trace of fine grained sand, and fine to medium grained igneous gravel.	w <pl< td=""><td>Hd</td><td>>600 >600 >600 >600</td><td>SCREEN: 10.75kg \(\rho\-0.2m, \rm O FCF\) ALLUVIAL</td></pl<>	Hd	>600 >600 >600 >600	SCREEN: 10.75kg \(\rho\-0.2m, \rm O FCF\) ALLUVIAL
		N = 26 5,12,14	- - 2 - -						>600 >600 >600	- - -
			3- - -			Silty CLAY: medium to high plasticity, light grey mottled orange brown, trace of fine grained sand, and fine to medium grained igneous gravel.			450 500 550	- HP TESTING ON - REMOULDED SAMPLE
2 DAYS AFTER			- - 4 –			as above, but grey and brown.			>600 >600 >600	- - -
COMPLET ION	-	N = 22 8,8,14	-						>600	-
			- -							GROUNDWATER MONITORING WELL INSTALLED TO 4.9m.
			5 - - - 6 – - - - - -			END OF BOREHOLE AT 5.0m				CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 4.9m TO 2.5m. CASING 2.5m TO 0.12m. 2mm SAND FILTER PACK 4.9m TO 2.5m. BENTONITE SEAL 2.5m TO 2.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

SDUP3: 0-0.2m

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Date: 9/5/23 **Datum:** AHD

	Plant Type: HANJIN DB8					Logged/Checked by: CSY/OF					
	Plant	Туре	: HANJII	N DB8	}	Logg	jed/Checked by: C.S.Y./O.F.				
1	Groundwater Record ES DS DB Field Tests Depth (m) Graphic Log				Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
				0 -			FILL: Silty clay, medium to high plasticity, red brown, trace of fine grained igneous gravel and root fibres.	w>PL		=	GRASS COVER SCREEN: 10.0kg 0-0.2m, NO FCF
			N = 27 5,12,15	- - 1 – -		СН	Silty CLAY: high plasticity, brown, trace of fine to medium grained igneous gravel, fine grained ironstone gravel, and root fibres.	w <pl< td=""><td>Hd</td><td>>600 >600 >600</td><td>ALLUVIAL</td></pl<>	Hd	>600 >600 >600	ALLUVIAL
			N = 14 3,6,8	- - 2 – -			Silty CLAY: medium to high plasticity, brown, trace of fine to medium grained igneous gravel and root fibres.	w <pl< td=""><td>(F)</td><td>480 530 550</td><td>-</td></pl<>	(F)	480 530 550	-
				- - 3-		CL-CI	Silty CLAY: low to medium plasticity,	 w>PL	_ <u>_</u> _	-	· · -
			N = 6 2,3,3	- - - 4 –			light grey mottled orange brown and red brown, trace of sand. Sandy silty CLAY: low to medium	<u>-</u>		120 170 180	-
_	ON MPLET			- - -			plasticity, light grey mottled orange brown, fine grained sand, trace of shell and muscovite fragments.		0.	40 30 50	HP TESTING ON REMOULDED SAMPLE
	ION J			5 - - -			END OF BOREHOLE AT 4.95m				
				6 - - -						-	- : :
				- 7_							

SDUP2: 0-0.2m

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Date: 9/5/23 **Datum:** AHD

Date	: 9/5/2	3						D	atum: /	AHD
Plan	t Type:	HANJI	N DB8	1	Logg	ged/Checked by: C.S.Y./O.F.				
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0 -			FILL: Silty clay, low to medium plasticity, brown, trace of fine to	w>PL		-	GRASS COVER
		N = 10 3,3,7	- - 1 - -		CI-CH	medium grained sand, fine grained /igneous gravel, and root fibres/Silty CLAY: medium to high plasticity, red brown, trace of fine grained igneous gravel, and root fibres.	w>PL	VSt	250 320 350	SCREEN: 10.48kg 0-0.2m, NO FCF ALLUVIAL
		N = 10 3,4,6	- - 2 - -			Silty CLAY: medium to high plasticity, brown mottled red brown, trace of fine to medium grained igneous gravel, ash and root fibres.	w≈PL	Hd	430 500 550	· · -
2 DAYS AFTER COMPLE ⁻			- 3- -		CL-CI	Silty CLAY: low to medium plasticity, brown and orange brown, trace of fine grained sand.	w>PL	 F		- - - -
ION			- 4 — -						40 40 50	HP TESTING ON REMOULDED SAMPLE
ON COMPLETION	- Т-		- - 5 —						60	GROUNDWATER MONITORING WELL INSTALLED TO 4.88m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC
ION		N = 9 0,4,5	-						80 110	STANDPIPE 4.88m TO 2.58m. CASIN
			- 6 - - - - -			END OF BOREHOLE AT 5.45m				2.58m TO 0.12m. 2mm SAND FILTER PACK 4.88m TO 2.2m. BENTONITE SEAL 2.2m TO 1.8m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

DPYRIGHT

SDUP4: 0-0.2m

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Date: 9/5/23 **Datum:** AHD

l	Plant			: HANJII	N DB8	}	Logg	ged/Checked by: C.S.Y./O.F.			,	
	Groundwater Record	ES U50 SAMPLES	П	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
					0			FILL: Clayey Silt, low plasticity, red ¬ brown, with fine grained sand, trace of	w <pl< th=""><th></th><th></th><th>GRASS COVER</th></pl<>			GRASS COVER
				N = 18 3,9,9	- - - 1 –		CI-CH	root fibres. Silty CLAY: medium to high plasticity, red brown, trace of fine to medium grained igneous gravel.	w <pl< th=""><th>Hd</th><th>-</th><th>SCREEN: 10.12kg 0-0.2m, NO FCF - ALLUVIAL</th></pl<>	Hd	-	SCREEN: 10.12kg 0-0.2m, NO FCF - ALLUVIAL
				N = 9 3,4,5	- - 2 -		CL-CI	Silty CLAY: medium to high plasticity, brown mottled light grey and orange brown, trace of fine grained igneous and ironstone gravel, and root fibres.	 w>PL		450 350 120	- - - - HP TESTING ON
					- - -		CL-CI	Silty CLAY: low to medium plasticity, light grey mottled orange brown, with fine to medium grained sand.	W>PL	(S-F)	250 230 200	REMOULDED SAMPLE
C	ON OMPLET	-		N = 2 2,2,0	3 - - - - -		CL	Sandy CLAY: low plasticity, brown, fine to coarse grained sand, trace of shell fragments.	w>PL	F	80 110 90	- - - -
	ION			N = 13 3,5,8	- - -		SM	Silty SAND: fine to coarse grained, brown, trace of shell fragments.		MD		- - -
					5 - - -	[]30		END OF BOREHOLE AT 4.95m				- - -
					6 - -							-
					- - 7 _	_					_	

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.8m

Date: 10/5/23 **Datum:** AHD

	t Type	: HANJII	N DB8	3	Logg	ged/Checked by: C.S.Y./O.F.		_	atam. 7	WID.
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0			FILL: Silty sand, fine to coarse grained, brown, trace of fine grained	М			GRASS COVER
		N = 9 2,3,6	-		CI-CH	sandstone gravel, and clay. Silty CLAY: medium to high plasticity, red brown and brown, trace of fine to medium grained sand fine to medium grained igneous gravel, ash and root fibres.	w≈PL	VSt	320 350 \ 350	SCREEN: 11.45kg 0-0.2m, NO FCF ALLUVIAL
		N = 11 3,4,7	1-		CI T	Silty CLAY: medium plasticity, light grey, trace of ash and root fibres.	w>PL		230 320 380 420 450	THP TESTING ON REMOULDED
			3-		SC	Clayey SAND: fine to coarse grained, brown, fine to medium plasticity clay.	M	L -	480	SAMPLE
*		N = 8 3,4,4					W		-	
ON COMPLET ION	T-	N = 11 4,6,5	4-		CI-CH SC	Silty CLAY: medium to high plasticity, light grey mottled orange brown, trace of root fibres. Clayey SAND: fine to coarse grained, brown, trace of fine to medium grained igneous gravel.	w>PL 	St- VSt	120 250 310 /	- - -
			5			END OF BOREHOLE AT 5.0m			-	- - - - -

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.6m

Datum: AHD

Date	e: 8/5/2	:3						D	atum:	AHD
Plan	nt Type:	HANJI	N DB8	,	Logg	ged/Checked by: C.S.Y./O.F.				
Groundwater Record	ES U50 DB DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE ION	٧ .		0 - - - 1 – -		CL-CI	Sandy silty CLAY: low to medium plasticity, red brown, fine to medium grained sand, with fine to medium grained igneous gravel, and root fibres.	w <pl< th=""><th>(Hd)</th><th></th><th>GRASS COVER SCREEN: 15.0kg 0-0.1m, NO FCF SCREEN: 11.45kg 0.1-0.5m, NO FCF SCREEN: 6.75kg 1.0-1.5m, NO FCF</th></pl<>	(Hd)		GRASS COVER SCREEN: 15.0kg 0-0.1m, NO FCF SCREEN: 11.45kg 0.1-0.5m, NO FCF SCREEN: 6.75kg 1.0-1.5m, NO FCF
			-	× V.·/		END OF BOREHOLE AT 1.5m				-
			2 —							

OPYRIGHT

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.9m

Date: 8/5/23 **Datum:** AHD

Date : 8/5/23		Datum : AHD
Plant Type: HANJIN DB8	Logged/Checked by: C.S.Y./O.F.	
Groundwater Record ES DB DS DS Field Tests Depth (m)	Graphic Log Unified Classification MOITALIANSSA	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
TOMPLET ION 3	FILL: Sandy silty clay, low to medium plasticity, brown, fine to medium grained sand, with fine to medium grained igneous, claystone and sandstone gravel. Sandy silty CLAY: low to medium plasticity, red brown, fine to medium grained sand, trace of fine grained igneous gravel. as above, but brown. END OF BOREHOLE AT 1.5m	SCREEN: 10.4kg O-0.2m, NO FCF SCREEN: 6.01kg O.2-0.7m, NO FCF SCREEN: 10.11kg O.7-1.0m, NO FCF HP TESTING ON REMOULDED SAMPLE O.7-1.0m, NO FCF O
7		-

OPYRIGHT

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.6m

Date: 8/5/23 **Datum:** AHD

Date: 8/5/23		Datum: AHD
Plant Type: HANJIN DB8	Logged/Checked by: C.S.Y./O.F.	
Groundwater Record ES DS DS DS Field Tests Depth (m) Graphic Log	Unified Class ification MOITHINGS MOITHING MOITHINGS MOITHINGS MOITHINGS MOITHINGS MOITHINGS MOITHINGS MOI	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLET-ION	FILL: Silty clay, medium to high plasticity, brown, trace of fine to medium grained sand, fine to medium grained igneous gravel, and root fibres.	w>PL GRASS COVER POSSIBLY NATURAL SCREEN: 10.66kg 0-0.2m, NO FCF
	SC Sandy silty CLAY: low to medium plasticity, brown, fine to medium grained sand trace of fine grained igneous gravel.	w≈PL (St) ALLUVIAL
2	END OF BOREHOLE AT 2.0m	-
		-
3-		-
		-
4-		_
		-
		-
5 —		-
		-
6 -		-
		-

)PYRIGHT

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: 35821BF Method: SPIRAL AUGER R.L. Surface: ≈ 108.6m

Datum: AHD

	Plant Type: HANJIN DB8					Datum: AHD					
Plar	nt Type	: HANJII	N DB8		Logo	ged/Checked by: C.S.Y./O.F.					
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY OI COMPLE ION	N ET-		-			FILL: Sandy silt, low plasticity, red brown, fine to medium grained sand, trace of fine grained sand, clay nodules and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS COVER - SCREEN: 10.01kg - 0-0.2m, NO FCF</td></pl<>			GRASS COVER - SCREEN: 10.01kg - 0-0.2m, NO FCF	
			- - 1- -		CL-CI	Silty CLAY: low to medium plasticity, brown, trace of fine grained sand, and clay nodules.	w <pl< td=""><td>(VSt)</td><td></td><td>ALLUVIAL</td></pl<>	(VSt)		ALLUVIAL	
-			_	/		END OF BOREHOLE AT 1.5m			-	-	
			2 — 2 — 3 — 3 — 4 — 4 — 5 — — 6 — — — — — — — — — — — — — — —								

OPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR **Method:** TEST PIT **R.L. Surface:** \approx 108.8m

Datum: AHD

Date: 11/5/23					D	atum:	АПО
Plant Type: 5T	EXCAVAT	OR Log	ged/Checked by: O.B./T.H.				
Groundwater Record ES ASB SAMPLES SAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	0.5 - 1.5 - 2.5 -	Graph Onitie	FILL: Silty clay, low to medium plasticity, brown, trace of root fibres. FILL: Silty clay, low to medium plasticity, red brown, trace of ash and root fibres. Silty CLAY: medium to high plasticity, red brown.	Moisti A Noisti A Condi	Streng Rel. D	Hand Penet Penet Readily Readi	SCREEN: 10.41kg 0-0.2m, NO FCF SCREEN: 10.27kg 0.2-0.3m, NO FCF ALLUVIAL
	3-						- - -

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.:E35821PRMethod:TEST PITR.L. Surface:≈ 108.7m

Datum: AHD

Plant Type:	5T EXC	CAVA	ΓOR	Logg	jed/Checked by: O.B./T.H.				
Groundwater Record ESS ASB SAMPLES	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION		- - -			FILL: Silty clay, low to medium plasticity, brown, trace of root fibres.	w <pl< td=""><td></td><td></td><td>SCREEN: 10.71kg - 0-0.2m, NO FCF -</td></pl<>			SCREEN: 10.71kg - 0-0.2m, NO FCF -
		0.5 —		CI-CH	Silty CLAY: medium to high plasticity, brown and red brown.	w <pl< td=""><td></td><td></td><td>ALLUVIAL SCREEN: 10.47kg 0.4-0.6m, NO FCF</td></pl<>			ALLUVIAL SCREEN: 10.47kg 0.4-0.6m, NO FCF
		1.5 —			END OF TEST PIT AT 1.3m				

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Job No.: E35821PR Method: TEST PIT R.L. Surface: ≈ 109.0m

Date: 11/5/23 **Datum:** AHD

Date: 11/5/23				ט	atum:	AHD
Plant Type: 5T EXCAVATO	R Logg	ed/Checked by: O.B./T.H.				
Groundwater Record Record ASS AAS SAL DB Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION		FILL: Silty clay, low to medium plasticity, brown, trace of root fibres. FILL: Silty clay, low to medium	w≈PL			SCREEN: 11.04kg - 0-0.2m, NO FCF - - - - SCREEN: 10.50kg
	CI-CH	plasticity, red brown, trace of ash and root fibres. Silty CLAY: medium to high plasticity, red brown.	w <pl< td=""><td></td><td></td><td>0.5-0.7m, NO FCF</td></pl<>			0.5-0.7m, NO FCF
						- - -
1.5 –		END OF TEST PIT AT 1.3m				-
2-						- - -
2.5 –						- - -
						- - -
3-						- - -
3.5						-

PYRIGHT

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	>200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤25	≤ 12
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable	– soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 77 77 77 7 77 77 77 77 77 QUARTZITE PEAT AND HIGHLY ORGANIC SOILS (Pt)

OTHER MATERIALS

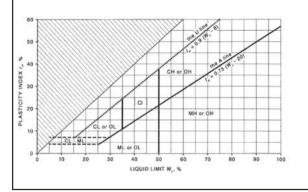
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification	
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>	
rsize fract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
luding ove	uding ove	GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt	
of sail exclu		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay	
than 65% eater thar	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu > 6 1 < Cc < 3	
ioi (mare	of coarse fraction is smaller than	fraction	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
Carse grained soil (more than 65% of soil excluding oversize fraction is greater than 0.075mm)	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty		
Coars		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A	

		Group			Laboratory Classification		
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
Bulpr	SILT and CLAY ML (low to medium		Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ainedsoils (more than 35% of soil exdu oxasizeffaction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
in 35% ss than		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY (high plasticity)	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti		(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High
inegainedsoils (more than 35% of soil excluding oversize fraction is less than 0,075mm)		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	Definition						
Groundwater Record		Standing water level	. Time delay following compl	etion of drilling/excavation may be show	n.			
	—с—	Extent of borehole/t	Extent of borehole/test pit collapse shortly after drilling/excavation.					
	•	Groundwater seepa	Groundwater seepage into borehole or test pit noted during drilling or excavation.					
Samples	ES	•	epth indicated, for environm					
	U50		diameter tube sample taken					
	DB		le taken over depth indicate					
	DS	_	sample taken over depth ind					
	ASB	•	er depth indicated, for asbes					
	ASS	· ·	er depth indicated, for acid s					
	SAL	•	er depth indicated, for salinit					
	PFAS	Soil sample taken ov	er depth indicated, for analy	sis of Per- and Polyfluoroalkyl Substances	S.			
Field Tests	N = 17 4, 7, 10	figures show blows p		tween depths indicated by lines. Indivi isal' refers to apparent hammer refusal w				
	N _c = 5 7 3R	figures show blows p	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.					
	VNS = 25	Vane shear reading i	Vane shear reading in kPa of undrained shear strength.					
	PID = 100	_	Photoionisation detector reading in ppm (soil sample headspace test).					
Moisture Condition	w > PL	Moisture content estimated to be greater than plastic limit.						
(Fine Grained Soils)	w≈ PL	Moisture content es	Moisture content estimated to be approximately equal to plastic limit.					
	w < PL	Moisture content estimated to be less than plastic limit.						
	w≈LL		timated to be near liquid lim					
	w > LL	Moisture content es	timated to be wet of liquid li	nit.				
(Coarse Grained Soils)	D	DRY – runs free	ly through fingers.					
	M		run freely but no free water	visible on soil surface.				
	W	WET – free wate	er visible on soil surface.					
Strength (Consistency)	VS	VERY SOFT – un	confined compressive streng	gth ≤ 25kPa.				
Cohesive Soils	S	SOFT – un	confined compressive streng	gth > 25kPa and ≤ 50kPa.				
	F	FIRM – un	confined compressive streng	gth > 50kPa and ≤ 100kPa.				
	St	STIFF – un	confined compressive streng	gth > 100kPa and ≤ 200kPa.				
	VSt	VERY STIFF – un	confined compressive streng	gth > 200kPa and ≤ 400kPa.				
	Hd	HARD – un	confined compressive streng	gth > 400kPa.				
	Fr	FRIABLE – str	ength not attainable, soil cru	imbles.				
	()	Bracketed symbol indicates estimated consistency based on tactile examination assessment.						
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)				
(Cohesionless Soils)	VL	VERY LOOSE	≤ 15	0-4				
	L	LOOSE	> 15 and ≤ 35	4-10				
	MD	MEDIUM DENSE	> 35 and ≤ 65	10 – 30				
	D	DENSE	> 65 and ≤ 85	30 – 50				
	VD	VERY DENSE	> 85	>50				
	()	Bracketed symbol in	dicates estimated density ba	sed on ease of drilling or other assessme	ent.			

Log Column	Symbol	Definition	Definition				
Hand Penetrometer Readings	300 250		Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				
Remarks	'V' bit	Hardened steel	'V' shaped bit.				
	'TC' bit	Twin pronged to	ungsten carbide bit.				
	T ₆₀	Penetration of a without rotation	nuger string in mm under static load of rig applied by drill head hydraulics n of augers.				
	Soil Origin	The geological o	rigin of the soil can generally be described as:				
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 				
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 				
		ALLUVIAL	– soil deposited by creeks and rivers.				
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 				
		MARINE	 soil deposited in a marine environment. 				
		AEOLIAN	 soil carried and deposited by wind. 				
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 				
		LITTORAL	– beach deposited soil.				

Classification of Material Weathering

Term		Abbreviation		Definition	
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	
Highly Weathered	Distinctly Weathered	HW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.	

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength			
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index IS ₍₅₀₎ (MPa)	Field Assessment		
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.		
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.		
Medium Strength	M	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.		
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.		
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.		
Extremely High Strength	EH	> 200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.		

Appendix E: Laboratory Reports & COC Documents

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 334243

Client Details	
Client	JK Environments
Attention	C Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35821PR Finley
Number of Samples	82 Soil, 1 Water
Date samples received	28/09/2023
Date completed instructions received	28/09/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	06/10/2023	
Date of Issue	06/10/2023	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Liam Timmins, Organics Supervisor Loren Bardwell, Development Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Senior Chemist Tim Toll, Chemist (FAS)

Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: E35821PR Finley

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-1	334243-2	334243-6	334243-8	334243-9
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH103
Depth		0.1-0.3	0.6-0.95	0.02-0.2	0.02-0.2	0.6-0.95
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	80	73	82	79	68

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-14	334243-15	334243-18	334243-20	334243-22
Your Reference	UNITS	BH104	BH104	BH104	BH105	TP106
Depth		0-0.2	0.6-0.95	4.6-4.95	0.05-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	74	73	72	81	81

Client Reference: E35821PR Finley

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-24	334243-25	334243-26	334243-28	334243-29
Your Reference	UNITS	TP107	TP107	TP108	TP109	TP109
Depth		0-0.2	0.7-0.9	0-02	0-0.2	0.7-0.9
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	74	105	113	118	113

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-30	334243-31	334243-32	334243-34	334243-36
Your Reference	UNITS	TP110	TP110	TP111	TP112	TP113
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	103	108	103	101

Client Reference: E35821PR Finley

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-38	334243-39	334243-40	334243-41	334243-42
Your Reference	UNITS	TP114	TP114	TP115	TP115	TP116
Depth		0-0.2	0.8-1	0-0.2	1.1-1.3	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	06/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	100	105	94	108	111

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-44	334243-46	334243-47	334243-48	334243-49
Your Reference	UNITS	TP117	TP118	TP118	TP119	TP119
Depth		0-0.2	0-0.2	1-1.2	0-0.2	0.7-0.9
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	108	111	111	108	112

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-50	334243-51	334243-52	334243-54	334243-56
Your Reference	UNITS	TP120	TP120	TP121	BH122	TP123
Depth		0-0.2	0.6-0.2	0-0.2	0.05-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	19/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	109	106	108	103	112

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-57	334243-58	334243-60	334243-61	334243-62
Your Reference	UNITS	TP123	TP124	TP125	TP125	TP126
Depth		0.6-0.8	0-0.2	0-0.2	0.7-09	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	105	101	108	110	109

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-64	334243-65	334243-66	334243-68	334243-70
Your Reference	UNITS	TP127	TP127	TP128	TP129	TP130
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	109	106	107	111	105

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-71	334243-72	334243-74	334243-76	334243-77
Your Reference	UNITS	TP130	TP131	TP132	SDUP1	SDUP2
Depth		0.5-0.7	0-0.2	0-0.2	-	-
Date Sampled		22/09/2023	22/09/2023	22/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	104	110	107	107

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334243-78	334243-79	334243-80	334243-82	334243-83
Your Reference	UNITS	SDUP3	TS-S1	TB-S1	TS-S2	TB-S2
Depth		-	-	-	-	-
Date Sampled		21/09/2023	18/09/2023	18/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
TRH C6 - C9	mg/kg	<25	[NA]	<25	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	<25	[NA]	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	[NA]	<25	[NA]	<25
Benzene	mg/kg	<0.2	98%	<0.2	100%	<0.2
Toluene	mg/kg	<0.5	99%	<0.5	101%	<0.5
Ethylbenzene	mg/kg	<1	98%	<1	102%	<1
m+p-xylene	mg/kg	<2	97%	<2	102%	<2
o-Xylene	mg/kg	<1	96%	<1	102%	<1
Naphthalene	mg/kg	<1	[NA]	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<1	[NA]	<1	[NA]	<1
Surrogate aaa-Trifluorotoluene	%	109	98	115	104	114

svTRH (C10-C40) in Soil						
Our Reference		334243-1	334243-2	334243-6	334243-8	334243-9
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH103
Depth		0.1-0.3	0.6-0.95	0.02-0.2	0.02-0.2	0.6-0.95
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	04/10/2023	03/10/2023	03/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	120	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	240	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	350	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	250	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	290	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	540	<50	<50
Surrogate o-Terphenyl	%	94	96	91	95	97

svTRH (C10-C40) in Soil						
Our Reference		334243-14	334243-15	334243-18	334243-20	334243-22
Your Reference	UNITS	BH104	BH104	BH104	BH105	TP106
Depth		0-0.2	0.6-0.95	4.6-4.95	0.05-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	04/10/2023	03/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	92	95	92	97	87

svTRH (C10-C40) in Soil								
Our Reference		334243-24	334243-25	334243-26	334243-28	334243-29		
Your Reference	UNITS	TP107	TP107	TP108	TP109	TP109		
Depth		0-0.2	0.7-0.9	0-02	0-0.2	0.7-0.9		
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023		
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023		
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50		
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100		
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100		
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50		
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50		
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50		
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100		
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100		
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50		
Surrogate o-Terphenyl	%	92	92	92	92	90		

svTRH (C10-C40) in Soil						
Our Reference		334243-30	334243-31	334243-32	334243-34	334243-36
Your Reference	UNITS	TP110	TP110	TP111	TP112	TP113
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	92	93	91	91

svTRH (C10-C40) in Soil						
Our Reference		334243-38	334243-39	334243-40	334243-41	334243-42
Your Reference	UNITS	TP114	TP114	TP115	TP115	TP116
Depth		0-0.2	0.8-1	0-0.2	1.1-1.3	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	150	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	280	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	430	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	330	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	260	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	590	<50
Surrogate o-Terphenyl	%	95	92	91	94	94

svTRH (C10-C40) in Soil						
Our Reference		334243-44	334243-46	334243-47	334243-48	334243-49
Your Reference	UNITS	TP117	TP118	TP118	TP119	TP119
Depth		0-0.2	0-0.2	1-1.2	0-0.2	0.7-0.9
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	77	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	520	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	390	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	990	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	210	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	210	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	630	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	230	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	1,100	<50	<50	<50
Surrogate o-Terphenyl	%	90	114	92	91	92

Envirolab Reference: 334243

Revision No: R00

svTRH (C10-C40) in Soil						
Our Reference		334243-50	334243-51	334243-52	334243-54	334243-56
Your Reference	UNITS	TP120	TP120	TP121	BH122	TP123
Depth		0-0.2	0.6-0.2	0-0.2	0.05-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	19/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	92	92	94	94	96

svTRH (C10-C40) in Soil						
Our Reference		334243-57	334243-58	334243-60	334243-61	334243-62
Your Reference	UNITS	TP123	TP124	TP125	TP125	TP126
Depth		0.6-0.8	0-0.2	0-0.2	0.7-09	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	97	95	95	99	95

Envirolab Reference: 334243

Revision No: R00

svTRH (C10-C40) in Soil						
Our Reference		334243-64	334243-65	334243-66	334243-68	334243-70
Your Reference	UNITS	TP127	TP127	TP128	TP129	TP130
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	150	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	150	<50
Surrogate o-Terphenyl	%	94	96	97	93	94

svTRH (C10-C40) in Soil						
Our Reference		334243-71	334243-72	334243-74	334243-76	334243-77
Your Reference	UNITS	TP130	TP131	TP132	SDUP1	SDUP2
Depth		0.5-0.7	0-0.2	0-0.2	-	-
Date Sampled		22/09/2023	22/09/2023	22/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	150
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	150
Surrogate o-Terphenyl	%	93	90	92	91	92

svTRH (C10-C40) in Soil				
Our Reference		334243-78	334243-80	334243-83
Your Reference	UNITS	SDUP3	TB-S1	TB-S2
Depth		-	-	-
Date Sampled		21/09/2023	18/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	92	93	94

PAHs in Soil						
Our Reference		334243-1	334243-2	334243-6	334243-8	334243-9
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH103
Depth		0.1-0.3	0.6-0.95	0.02-0.2	0.02-0.2	0.6-0.95
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	04/10/2023	04/10/2023	03/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	112	103	105	106	104

PAHs in Soil						
Our Reference		334243-14	334243-15	334243-18	334243-20	334243-22
Your Reference	UNITS	BH104	BH104	BH104	BH105	TP106
Depth		0-0.2	0.6-0.95	4.6-4.95	0.05-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	110	106	100	96	98

Envirolab Reference: 334243 Revision No: R00 Page | 15 of 92

PAHs in Soil						
Our Reference		334243-24	334243-25	334243-26	334243-28	334243-29
Your Reference	UNITS	TP107	TP107	TP108	TP109	TP109
Depth		0-0.2	0.7-0.9	0-02	0-0.2	0.7-0.9
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	04/10/2023	04/10/2023	03/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	108	100	95	108	98

PAHs in Soil						
Our Reference		334243-30	334243-31	334243-32	334243-34	334243-36
Your Reference	UNITS	TP110	TP110	TP111	TP112	TP113
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.6	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.4	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	2.0	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	0.6	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	102	107	100	103

PAHs in Soil						
Our Reference		334243-38	334243-39	334243-40	334243-41	334243-42
Your Reference	UNITS	TP114	TP114	TP115	TP115	TP116
Depth		0-0.2	0.8-1	0-0.2	1.1-1.3	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	04/10/2023	03/10/2023	04/10/2023	03/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	111	104	109	104	114

PAHs in Soil						
Our Reference		334243-44	334243-46	334243-47	334243-48	334243-49
Your Reference	UNITS	TP117	TP118	TP118	TP119	TP119
Depth		0-0.2	0-0.2	1-1.2	0-0.2	0.7-0.9
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	03/10/2023	04/10/2023	04/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	108	100	102	103

PAHs in Soil						
Our Reference		334243-50	334243-51	334243-52	334243-54	334243-56
Your Reference	UNITS	TP120	TP120	TP121	BH122	TP123
Depth		0-0.2	0.6-0.2	0-0.2	0.05-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	19/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	04/10/2023	04/10/2023	04/10/2023	03/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	107	99	105	103	115

Envirolab Reference: 334243

Revision No: R00

PAHs in Soil						
Our Reference		334243-57	334243-58	334243-60	334243-61	334243-62
Your Reference	UNITS	TP123	TP124	TP125	TP125	TP126
Depth		0.6-0.8	0-0.2	0-0.2	0.7-09	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	03/10/2023	04/10/2023	04/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	109	113	101	101	100

PAHs in Soil						
Our Reference		334243-64	334243-65	334243-66	334243-68	334243-70
Your Reference	UNITS	TP127	TP127	TP128	TP129	TP130
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	03/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	104	106	106	107	107

PAHs in Soil						
Our Reference		334243-71	334243-72	334243-74	334243-76	334243-77
Your Reference	UNITS	TP130	TP131	TP132	SDUP1	SDUP2
Depth		0.5-0.7	0-0.2	0-0.2	-	-
Date Sampled		22/09/2023	22/09/2023	22/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	03/10/2023	03/10/2023	03/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	102	107	106	112	101

PAHs in Soil				
Our Reference		334243-78	334243-80	334243-83
Your Reference	UNITS	SDUP3	TB-S1	TB-S2
Depth		-	-	-
Date Sampled		21/09/2023	18/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	100	96	99

Organochlorine Pesticides in soil						
Our Reference		334243-1	334243-8	334243-14	334243-24	334243-28
Your Reference	UNITS	BH101	BH103	BH104	TP107	TP109
Depth		0.1-0.3	0.02-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	113	109	110	112	110

Organochlorine Pesticides in soil						
Our Reference		334243-38	334243-40	334243-42	334243-46	334243-50
Your Reference	UNITS	TP114	TP115	TP116	TP118	TP120
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.9	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	109	113	107	107

Organochlorine Pesticides in soil						
Our Reference		334243-56	334243-58	334243-66	334243-70	334243-72
Your Reference	UNITS	TP123	TP124	TP128	TP130	TP131
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	04/10/2023	03/10/2023	03/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	116	114	106	110	106

Organochlorine Pesticides in soil			
Our Reference		334243-74	334243-76
Your Reference	UNITS	TP132	SDUP1
Depth		0-0.2	-
Date Sampled		22/09/2023	21/09/2023
Type of sample		Soil	Soil
Date extracted	-	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023
alpha-BHC	mg/kg	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	109	113

Organophosphorus Pesticides in Soil						
Our Reference		334243-1	334243-8	334243-14	334243-24	334243-28
Your Reference	UNITS	BH101	BH103	BH104	TP107	TP109
Depth		0.1-0.3	0.02-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	113	109	110	112	110

Organophosphorus Pesticides in Soil						
Our Reference		334243-38	334243-40	334243-42	334243-46	334243-50
Your Reference	UNITS	TP114	TP115	TP116	TP118	TP120
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	109	113	107	107

Organophosphorus Pesticides in Soil						
Our Reference		334243-56	334243-58	334243-66	334243-70	334243-72
Your Reference	UNITS	TP123	TP124	TP128	TP130	TP131
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	04/10/2023	03/10/2023	03/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	116	114	106	110	106

Organophosphorus Pesticides in Soil			
Our Reference		334243-74	334243-76
Your Reference	UNITS	TP132	SDUP1
Depth		0-0.2	-
Date Sampled		22/09/2023	21/09/2023
Type of sample		Soil	Soil
Date extracted	-	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023
Dichlorvos	mg/kg	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1
Surrogate TCMX	%	109	113

PCBs in Soil						
Our Reference		334243-1	334243-8	334243-14	334243-24	334243-28
Your Reference	UNITS	BH101	BH103	BH104	TP107	TP109
Depth		0.1-0.3	0.02-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	113	109	110	112	110

PCBs in Soil						
Our Reference		334243-38	334243-40	334243-42	334243-46	334243-50
Your Reference	UNITS	TP114	TP115	TP116	TP118	TP120
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	109	113	107	107

PCBs in Soil						
Our Reference		334243-56	334243-58	334243-66	334243-70	334243-72
Your Reference	UNITS	TP123	TP124	TP128	TP130	TP131
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	04/10/2023	03/10/2023	03/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	116	114	106	110	106

PCBs in Soil			
Our Reference		334243-74	334243-76
Your Reference	UNITS	TP132	SDUP1
Depth		0-0.2	-
Date Sampled		22/09/2023	21/09/2023
Type of sample		Soil	Soil
Date extracted	-	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	109	113

Acid Extractable metals in soil						
Our Reference		334243-1	334243-2	334243-6	334243-8	334243-9
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH103
Depth		0.1-0.3	0.6-0.95	0.02-0.2	0.02-0.2	0.6-0.95
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	13	5	10	7	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	25	27	16	34	27
Copper	mg/kg	31	16	16	25	20
Lead	mg/kg	13	12	9	17	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	18	21	16	20	17
Zinc	mg/kg	55	25	50	39	32

Acid Extractable metals in soil						
Our Reference		334243-14	334243-15	334243-18	334243-20	334243-22
Your Reference	UNITS	BH104	BH104	BH104	BH105	TP106
Depth		0-0.2	0.6-0.95	4.6-4.95	0.05-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	6	6	<4	6	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	22	27	27	25	10
Copper	mg/kg	31	22	16	14	3
Lead	mg/kg	23	14	27	13	5
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	20	19	14	2
Zinc	mg/kg	96	38	49	30	7

Acid Extractable metals in soil						
Our Reference		334243-24	334243-25	334243-26	334243-28	334243-29
Your Reference	UNITS	TP107	TP107	TP108	TP109	TP109
Depth		0-0.2	0.7-0.9	0-02	0-0.2	0.7-0.9
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	<4	8	6	5	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	40	28	20	32
Copper	mg/kg	11	24	18	15	21
Lead	mg/kg	9	18	15	75	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	23	17	12	22
Zinc	mg/kg	23	41	35	78	42

Acid Extractable metals in soil						
Our Reference		334243-30	334243-31	334243-32	334243-34	334243-36
Your Reference	UNITS	TP110	TP110	TP111	TP112	TP113
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	8	7	6	6	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	40	28	25	24	30
Copper	mg/kg	22	21	14	160	18
Lead	mg/kg	18	17	11	49	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	26	17	15	19	19
Zinc	mg/kg	36	47	37	120	38

Acid Extractable metals in soil								
Our Reference		334243-38	334243-39	334243-40	334243-41	334243-42		
Your Reference	UNITS	TP114	TP114	TP115	TP115	TP116		
Depth		0-0.2	0.8-1	0-0.2	1.1-1.3	0-0.2		
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023		
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023		
Arsenic	mg/kg	10	7	6	9	12		
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4		
Chromium	mg/kg	29	35	26	28	26		
Copper	mg/kg	41	21	18	27	15		
Lead	mg/kg	15	15	23	16	17		
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Nickel	mg/kg	17	28	16	20	15		
Zinc	mg/kg	38	35	43	69	33		

Acid Extractable metals in soil						
Our Reference		334243-44	334243-46	334243-47	334243-48	334243-49
Your Reference	UNITS	TP117	TP118	TP118	TP119	TP119
Depth		0-0.2	0-0.2	1-1.2	0-0.2	0.7-0.9
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	<4	<4	9	8	9
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	12	34	30	39
Copper	mg/kg	11	19	21	20	24
Lead	mg/kg	12	12	17	21	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	6	22	19	22
Zinc	mg/kg	35	32	44	72	43

Acid Extractable metals in soil						
Our Reference		334243-50	334243-51	334243-52	334243-54	334243-56
Your Reference	UNITS	TP120	TP120	TP121	BH122	TP123
Depth		0-0.2	0.6-0.2	0-0.2	0.05-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	19/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	4	8	5	8	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	33	21	37	10
Copper	mg/kg	15	21	35	21	3
Lead	mg/kg	15	16	17	18	5
Mercury	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	21	11	29	4
Zinc	mg/kg	65	39	47	44	16

Acid Extractable metals in soil						
Our Reference		334243-57	334243-58	334243-60	334243-61	334243-62
Your Reference	UNITS	TP123	TP124	TP125	TP125	TP126
Depth		0.6-0.8	0-0.2	0-0.2	0.7-09	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	4	<4	5	7	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	21	17	25	36	27
Copper	mg/kg	12	12	14	22	14
Lead	mg/kg	11	8	15	19	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	14	5	17	24	14
Zinc	mg/kg	28	30	28	43	24

Acid Extractable metals in soil						
Our Reference		334243-64	334243-65	334243-66	334243-68	334243-70
Your Reference	UNITS	TP127	TP127	TP128	TP129	TP130
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	5	8	7	6	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	22	35	36	19	26
Copper	mg/kg	13	22	18	14	15
Lead	mg/kg	16	16	15	17	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	21	20	14	16
Zinc	mg/kg	26	40	34	33	23

Acid Extractable metals in soil									
Our Reference		334243-71	334243-72	334243-74	334243-76	334243-77			
Your Reference	UNITS	TP130	TP131	TP132	SDUP1	SDUP2			
Depth		0.5-0.7	0-0.2	0-0.2	-	-			
Date Sampled		22/09/2023	22/09/2023	22/09/2023	21/09/2023	21/09/2023			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023			
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023			
Arsenic	mg/kg	7	4	4	7	6			
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4			
Chromium	mg/kg	32	24	19	31	19			
Copper	mg/kg	21	12	10	18	14			
Lead	mg/kg	16	12	12	16	16			
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Nickel	mg/kg	20	9	10	21	14			
Zinc	mg/kg	36	19	18	29	32			

Acid Extractable metals in soil					
Our Reference		334243-78	334243-80	334243-83	334243-84
Your Reference	UNITS	SDUP3	TB-S1	TB-S2	BH101 - [TRIPLICATE]
Depth		-	-	-	0.1-0.3
Date Sampled		21/09/2023	18/09/2023	25/09/2023	19/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	5	<4	<4	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	25	3	4	24
Copper	mg/kg	15	<1	<1	22
Lead	mg/kg	16	3	4	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	17	<1	<1	14
Zinc	mg/kg	30	3	3	40

						-
Moisture						
Our Reference		334243-1	334243-2	334243-6	334243-8	334243-9
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH103
Depth		0.1-0.3	0.6-0.95	0.02-0.2	0.02-0.2	0.6-0.95
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Moisture	%	6.3	17	9.0	17	18
Moisture						
Our Reference		334243-14	334243-15	334243-18	334243-20	334243-22
Your Reference	UNITS	BH104	BH104	BH104	BH105	TP106
Depth		0-0.2	0.6-0.95	4.6-4.95	0.05-0.2	0-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Moisture	%	11	15	20	9.4	<0.1
Moisture						
Our Reference		334243-24	334243-25	334243-26	334243-28	334243-29
Your Reference	UNITS	TP107	TP107	TP108	TP109	TP109
Depth		0-0.2	0.7-0.9	0-02	0-0.2	0.7-0.9
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Moisture	%	4.7	15	15	6.3	14
Moisture						
Our Reference		334243-30	334243-31	334243-32	334243-34	334243-36
Your Reference	UNITS	TP110	TP110	TP111	TP112	TP113
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023

Moisture			22/2/2	22424242		22424242
Our Reference		334243-38	334243-39	334243-40	334243-41	334243-42
Your Reference	UNITS	TP114	TP114	TP115	TP115	TP116
Depth		0-0.2	0.8-1	0-0.2	1.1-1.3	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Moisture	%	7.5	14	12	13	5.6
Moisture						
Our Reference		334243-44	334243-46	334243-47	334243-48	334243-49
Your Reference	UNITS	TP117	TP118	TP118	TP119	TP119
Depth		0-0.2	0-0.2	1-1.2	0-0.2	0.7-0.9
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Moisture	%	14	7.9	15	9.8	15
Moisture						
Our Reference		334243-50	334243-51	334243-52	334243-54	334243-56
Your Reference	UNITS	TP120	TP120	TP121	BH122	TP123
Depth		0-0.2	0.6-0.2	0-0.2	0.05-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	19/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/40/2022	04/40/0000	04/10/2023	04/10/2023
Moiaturo		0 17 1072020	04/10/2023	04/10/2023	04/10/2020	0 17 1072020
Moisture	%	12	19	7.8	18	4.9
	%	10				
Moisture	%	10				
Moisture Our Reference Your Reference	% UNITS	12	19	7.8	18	4.9
Moisture Our Reference Your Reference		334243-57	19 334243-58	7.8 334243-60	18 334243-61	4.9 334243-62
Moisture Our Reference Your Reference Depth		334243-57 TP123	19 334243-58 TP124	7.8 334243-60 TP125	18 334243-61 TP125	4.9 334243-62 TP126
Moisture Our Reference Your Reference Depth Date Sampled		334243-57 TP123 0.6-0.8	334243-58 TP124 0-0.2	7.8 334243-60 TP125 0-0.2	18 334243-61 TP125 0.7-09	4.9 334243-62 TP126 0-0.2
Moisture Our Reference		334243-57 TP123 0.6-0.8 22/09/2023	19 334243-58 TP124 0-0.2 22/09/2023	7.8 334243-60 TP125 0-0.2 22/09/2023	334243-61 TP125 0.7-09 22/09/2023	4.9 334243-62 TP126 0-0.2 22/09/2023
Moisture Our Reference Your Reference Depth Date Sampled Type of sample		334243-57 TP123 0.6-0.8 22/09/2023 Soil	334243-58 TP124 0-0.2 22/09/2023 Soil	7.8 334243-60 TP125 0-0.2 22/09/2023 Soil	334243-61 TP125 0.7-09 22/09/2023 Soil	4.9 334243-62 TP126 0-0.2 22/09/2023 Soil

Moisture						
Our Reference		334243-64	334243-65	334243-66	334243-68	334243-70
Your Reference	UNITS	TP127	TP127	TP128	TP129	TP130
Depth		0-0.2	0.6-0.8	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Moisture	%	11	15	15	8.0	13

Moisture						
Our Reference		334243-71	334243-72	334243-74	334243-76	334243-77
Your Reference	UNITS	TP130	TP131	TP132	SDUP1	SDUP2
Depth		0.5-0.7	0-0.2	0-0.2	-	-
Date Sampled		22/09/2023	22/09/2023	22/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Moisture	%	18	12	2.9	14	9.7

Moisture				
Our Reference		334243-78	334243-80	334243-83
Your Reference	UNITS	SDUP3	TB-S1	TB-S2
Depth		-	-	-
Date Sampled		21/09/2023	18/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023
Moisture	%	12	<0.1	5.4

Asharta ID asila NEDM ACRES						
Asbestos ID - soils NEPM - ASB-001 Our Reference		334243-1	334243-6	334243-8	334243-14	334243-20
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0.1-0.3	0.02-0.2	0.02-0.2	0-0.2	0.05-0.2
Date Sampled		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Sample mass tested	g	213.11	636.48	535.01	850.81	619.04
Sample Description	-	Red coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbesto detected			
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	_	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		334243-22	334243-24	334243-26	334243-28	334243-30
Your Reference	UNITS	TP106	TP107	TP108	TP109	TP110
Depth		0-0.2	0-0.2	0-02	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Sample mass tested	g	861.37	816.06	701.53	840.93	568.92
Sample Description	-	Red coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		334243-32	334243-34	334243-36	334243-38	334243-40
Your Reference	UNITS	TP111	TP112	TP113	TP114	TP115
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	21/09/2023	22/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Sample mass tested	g	520.62	518.89	578.14	598.55	620.91
Sample Description	-	Red coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Envirolab Reference: 334243

Revision No: R00

Asbestos ID - soils NEPM - ASB-001						
Our Reference		334243-42	334243-44	334243-46	334243-48	334243-50
Your Reference	UNITS	TP116	TP117	TP118	TP119	TP120
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		21/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Sample mass tested	g	559.62	667.34	662.68	724.36	655.12
Sample Description	-	Red coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	detected No asbestos detected	detected No asbestos detected	detected No asbestos detected	detected No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	-	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Envirolab Reference: 334243

Revision No: R00

Asbestos ID - soils NEPM - ASB-001						
Our Reference		334243-52	334243-54	334243-56	334243-58	334243-60
Your Reference	UNITS	TP121	BH122	TP123	TP124	TP125
Depth		0-0.2	0.05-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	19/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Sample mass tested	g	374.6	456.14	842.12	578.42	724.53
Sample Description	-	Red coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos#1	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Envirolab Reference: 334243

Revision No: R00

Asbestos ID - soils NEPM - ASB-001						
Our Reference		334243-62	334243-64	334243-66	334243-68	334243-70
Your Reference	UNITS	TP126	TP127	TP128	TP129	TP130
Depth		0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Sample mass tested	g	634.33	671.68	546.27	481.2	629.12
Sample Description	-	Red coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001			
Our Reference		334243-72	334243-74
Your Reference	UNITS	TP131	TP132
Depth		0-0.2	0-0.2
Date Sampled		22/09/2023	22/09/2023
Type of sample		Soil	Soil
Date analysed	-	06/10/2023	06/10/2023
Sample mass tested	g	716.72	834.04
Sample Description	-	Red coarse- grained soil & rocks	Red coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos#1	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_
FA and AF Estimation*	g	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

Misc Inorg - Soil					
Our Reference		334243-9	334243-31	334243-41	334243-57
Your Reference	UNITS	BH103	TP110	TP115	TP123
Depth		0.6-0.95	0.6-0.8	1.1-1.3	0.6-0.8
Date Sampled		19/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023
pH 1:5 soil:water	pH Units	8.8	7.9	8.9	8.4

Clay 50-120g					
Our Reference		334243-9	334243-31	334243-41	334243-57
Your Reference	UNITS	BH103	TP110	TP115	TP123
Depth		0.6-0.95	0.6-0.8	1.1-1.3	0.6-0.8
Date Sampled		19/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	05/10/2023	05/10/2023	05/10/2023	05/10/2023
Clay in soils <2µm	% (w/w)	46	20	30	51

CEC					
Our Reference		334243-9	334243-31	334243-41	334243-57
Your Reference	UNITS	BH103	TP110	TP115	TP123
Depth		0.6-0.95	0.6-0.8	1.1-1.3	0.6-0.8
Date Sampled		19/09/2023	21/09/2023	21/09/2023	22/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	05/10/2023	05/10/2023	05/10/2023	05/10/2023
Date analysed	-	05/10/2023	05/10/2023	05/10/2023	05/10/2023
Exchangeable Ca	meq/100g	1.3	2.5	24	2.7
Exchangeable K	meq/100g	0.2	0.3	2.7	0.2
Exchangeable Mg	meq/100g	1.8	1.1	6.4	2.1
Exchangeable Na	meq/100g	0.5	<0.1	0.3	0.2
Cation Exchange Capacity	meq/100g	3.9	4.0	33	5.2

vTRH(C6-C10)/BTEXN in Water		
Our Reference		334243-81
Your Reference	UNITS	FR1-HA
Depth		-
Date Sampled		22/09/2023
Type of sample		Water
Date extracted	-	30/09/2023
Date analysed	-	01/10/2023
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	102
Surrogate Toluene-d8	%	100
Surrogate 4-Bromofluorobenzene	%	98

svTRH (C10-C40) in Water		
Our Reference		334243-81
Your Reference	UNITS	FR1-HA
Depth		-
Date Sampled		22/09/2023
Type of sample		Water
Date extracted	-	04/10/2023
Date analysed	-	04/10/2023
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Total +ve TRH (>C10-C40)	μg/L	<50
Surrogate o-Terphenyl	%	92

PAHs in Water		
Our Reference		334243-81
Your Reference	UNITS	FR1-HA
Depth		-
Date Sampled		22/09/2023
Type of sample		Water
Date extracted	-	04/10/2023
Date analysed	-	06/10/2023
Naphthalene	μg/L	<0.1
Acenaphthylene	μg/L	<0.1
Acenaphthene	μg/L	<0.1
Fluorene	μg/L	<0.1
Phenanthrene	μg/L	<0.1
Anthracene	μg/L	<0.1
Fluoranthene	μg/L	<0.1
Pyrene	μg/L	<0.1
Benzo(a)anthracene	μg/L	<0.1
Chrysene	μg/L	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2
Benzo(a)pyrene	μg/L	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5
Total +ve PAH's	μg/L	<0.1
Surrogate p-Terphenyl-d14	%	109

Metals in Waters - Acid extractable		
Our Reference		334243-81
Your Reference	UNITS	FR1-HA
Depth		-
Date Sampled		22/09/2023
Type of sample		Water
Date prepared	-	03/10/2023
Date analysed	-	03/10/2023
Arsenic - Total	mg/L	<0.05
Cadmium - Total	mg/L	<0.01
Chromium - Total	mg/L	<0.01
Copper - Total	mg/L	0.1
Lead - Total	mg/L	<0.03
Mercury - Total	mg/L	<0.0005
Nickel - Total	mg/L	<0.02
Zinc - Total	mg/L	<0.02

Method ID	Methodology Summary
AS1289.3.6.3	Particle Size Distribution using in house method INORG-107 by way of sieving and/or hydrometer sedimentation testing. Clay fraction at <2µm reported.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334243-8
Date extracted	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			06/10/2023	1	04/10/2023	04/10/2023		04/10/2023	04/10/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	123	125
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	123	125
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	124	128
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	123	125
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	121	124
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	123	125
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	123	127
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	117	1	80	62	25	106	73

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	334243-40
Date extracted	-			[NT]	24	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	24	04/10/2023	04/10/2023		06/10/2023	04/10/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	24	<25	<25	0	115	79
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	24	<25	<25	0	115	79
Benzene	mg/kg	0.2	Org-023	[NT]	24	<0.2	<0.2	0	112	81
Toluene	mg/kg	0.5	Org-023	[NT]	24	<0.5	<0.5	0	114	79
Ethylbenzene	mg/kg	1	Org-023	[NT]	24	<1	<1	0	115	78
m+p-xylene	mg/kg	2	Org-023	[NT]	24	<2	<2	0	116	80
o-Xylene	mg/kg	1	Org-023	[NT]	24	<1	<1	0	120	79
Naphthalene	mg/kg	1	Org-023	[NT]	24	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	24	74	106	36	116	102

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	334243-56
Date extracted	-			[NT]	42	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	42	06/10/2023	06/10/2023		06/10/2023	06/10/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	42	<25	<25	0	127	122
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	42	<25	<25	0	127	122
Benzene	mg/kg	0.2	Org-023	[NT]	42	<0.2	<0.2	0	132	130
Toluene	mg/kg	0.5	Org-023	[NT]	42	<0.5	<0.5	0	126	122
Ethylbenzene	mg/kg	1	Org-023	[NT]	42	<1	<1	0	125	120
m+p-xylene	mg/kg	2	Org-023	[NT]	42	<2	<2	0	126	120
o-Xylene	mg/kg	1	Org-023	[NT]	42	<1	<1	0	131	125
Naphthalene	mg/kg	1	Org-023	[NT]	42	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	42	111	104	7	114	108

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	50	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	50	06/10/2023	06/10/2023			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	50	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	50	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	50	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	50	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	50	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	50	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	50	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	50	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	50	109	109	0		[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	66	03/10/2023	03/10/2023		[NT]	
Date analysed	-			[NT]	66	06/10/2023	06/10/2023		[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	66	<25	<25	0	[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	66	<25	<25	0	[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	66	<0.2	<0.2	0	[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	66	<0.5	<0.5	0	[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	66	<1	<1	0	[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	66	<2	<2	0	[NT]	
o-Xylene	mg/kg	1	Org-023	[NT]	66	<1	<1	0	[NT]	
Naphthalene	mg/kg	1	Org-023	[NT]	66	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	66	107	104	3	[NT]	

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	76	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	76	06/10/2023	06/10/2023			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	76	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	76	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	76	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	76	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	76	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	76	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	76	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	76	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	76	107	106	1		[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334243-8
Date extracted	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	133	104
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	124	104
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	115	82
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	133	104
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	124	104
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	115	82
Surrogate o-Terphenyl	%		Org-020	97	1	94	94	0	108	100

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	334243-40
Date extracted	-			[NT]	24	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	24	03/10/2023	03/10/2023		03/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	24	<50	<50	0	133	120
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	24	<100	<100	0	129	115
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	24	<100	<100	0	119	121
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	24	<50	<50	0	133	120
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	24	<100	<100	0	129	115
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	24	<100	<100	0	119	121
Surrogate o-Terphenyl	%		Org-020	[NT]	24	92	91	1	109	130

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	334243-56
Date extracted	-			[NT]	42	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	42	04/10/2023	04/10/2023		04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	42	<50	<50	0	128	81
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	42	<100	<100	0	120	85
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	42	<100	<100	0	129	101
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	42	<50	<50	0	128	81
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	42	<100	<100	0	120	85
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	42	<100	<100	0	129	101
Surrogate o-Terphenyl	%		Org-020	[NT]	42	94	95	1	109	120

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	50	03/10/2023	03/10/2023		[NT]	[NT]
Date analysed	-			[NT]	50	04/10/2023	04/10/2023		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	50	<50	<50	0	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	50	<100	<100	0	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	50	<100	<100	0	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	50	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	50	<100	<100	0	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	50	<100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	50	92	91	1	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	66	03/10/2023	03/10/2023			
Date analysed	-			[NT]	66	04/10/2023	04/10/2023			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	66	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	66	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	66	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	66	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	66	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	66	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	66	97	97	0		

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	76	03/10/2023	03/10/2023			
Date analysed	-			[NT]	76	04/10/2023	04/10/2023			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	76	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	76	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	76	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	76	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	76	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	76	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	76	91	92	1		

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334243-8
Date extracted	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	101
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	115
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	103
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	108
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	112
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	113	111
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	99
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	126	126
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	109	1	112	109	3	114	113

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	334243-40
Date extracted	-			[NT]	24	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	24	03/10/2023	03/10/2023		04/10/2023	03/10/2023
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	95	103
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	103	111
Fluorene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	93	101
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	108	104
Anthracene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	102	105
Pyrene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	105	107
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	93	93
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	24	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	24	<0.05	<0.05	0	104	134
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	24	108	114	5	100	108

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	334243-56
Date extracted	-			[NT]	42	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	42	03/10/2023	03/10/2023		04/10/2023	03/10/2023
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	97	107
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	101	117
Fluorene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	92	103
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	104	110
Anthracene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	106	110
Pyrene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	105	113
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	87	99
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	42	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	42	<0.05	<0.05	0	104	114
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	42	114	112	2	101	115

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	50	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	50	03/10/2023	03/10/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	50	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	50	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	50	107	105	2		[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	66	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	66	04/10/2023	03/10/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	66	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	66	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	66	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	66	106	112	6		[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	76	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	76	03/10/2023	03/10/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	76	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	76	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	76	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	76	112	110	2		[NT]

QUALITY CONT	ΓROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334243-8
Date extracted	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	106
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	100
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	91
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	97
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	107
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	119	117
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	120	118
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	86
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	86
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	100
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	110	1	113	112	1	114	114

QUALITY COI	NTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	334243-40
Date extracted	-			[NT]	24	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	24	03/10/2023	03/10/2023		04/10/2023	03/10/2023
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	106	104
нсв	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	102	100
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	103	91
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	111	85
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	104	100
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	103	113
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	128	112
Endrin	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	98	88
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	104	88
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	140	100
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	24	112	113	1	105	108

QUALITY CO	NTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	334243-56
Date extracted	-			[NT]	38	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	38	03/10/2023	03/10/2023		04/10/2023	03/10/2023
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	106	106
нсв	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	102	100
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	83	77
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	107	91
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	106	100
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	111	119
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	38	0.9	1.2	29	120	116
Endrin	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	98	74
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	102	88
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	140	80
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	38	112	101	10	106	117

QUALITY C	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	42	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	42	03/10/2023	03/10/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	42	113	114	1		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	50	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	50	03/10/2023	03/10/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
нсв	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	50	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	50	107	106	1		[NT]

QUALITY C	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				66	03/10/2023	03/10/2023			[NT]
Date analysed	-				66	04/10/2023	03/10/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		66	106	116	9		[NT]

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				76	03/10/2023	03/10/2023			[NT]
Date analysed	-				76	03/10/2023	03/10/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		76	113	109	4		[NT]

QUALITY CONTR	OL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334243-8
Date extracted	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	121	115
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	101
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	123	105
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	108
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	102
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	111
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	104
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	110	1	113	112	1	114	114

QUALITY CONT	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	334243-40
Date extracted	-				24	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-				24	03/10/2023	03/10/2023		04/10/2023	03/10/2023
Dichlorvos	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	121	117
Mevinphos	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	104	99
Fenitrothion	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	97	111
Malathion	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	106	118
Chlorpyriphos	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	108	98
Fenthion	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	95	113
Bromophos-ethyl	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	92	108
Phosalone	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		24	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		24	112	113	1	105	108

QUALITY CONTROL: Organophosphorus Pesticides in Soil					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	334243-56	
Date extracted	-				42	03/10/2023	03/10/2023		03/10/2023	03/10/2023	
Date analysed	-				42	03/10/2023	03/10/2023		04/10/2023	03/10/2023	
Dichlorvos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	135	111	
Mevinphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Phorate	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Dimethoate	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Disulfoton	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Parathion-Methyl	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	102	99	
Fenitrothion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	111	99	
Malathion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	118	101	
Chlorpyriphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	112	102	
Fenthion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Parathion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	103	103	
Bromophos-ethyl	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Methidathion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Fenamiphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	102	104	
Phosalone	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Coumaphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025		42	113	114	1	106	117	

QUALITY CONT	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				50	03/10/2023	03/10/2023			[NT]
Date analysed	-				50	03/10/2023	03/10/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		50	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		50	107	106	1		[NT]

QUALITY CONT	ROL: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				66	03/10/2023	03/10/2023			[NT]
Date analysed	-				66	04/10/2023	03/10/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		66	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		66	106	116	9		[NT]

QUALITY CONT	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				76	03/10/2023	03/10/2023			[NT]
Date analysed	-				76	03/10/2023	03/10/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		76	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		76	113	109	4		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334243-8
Date extracted	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	117	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	110	1	113	112	1	114	114

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	334243-40
Date extracted	-			[NT]	24	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	24	03/10/2023	03/10/2023		04/10/2023	03/10/2023
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	24	<0.1	<0.1	0	105	100
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	24	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	24	112	113	1	105	108

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	334243-56
Date extracted	-			[NT]	42	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	42	03/10/2023	03/10/2023		04/10/2023	03/10/2023
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	101	100
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	42	113	114	1	106	117

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	50	03/10/2023	03/10/2023		[NT]	[NT]
Date analysed	-			[NT]	50	03/10/2023	03/10/2023		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	50	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	50	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	50	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	50	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	50	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	50	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	50	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	50	107	106	1	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	66	03/10/2023	03/10/2023		[NT]	
Date analysed	-			[NT]	66	04/10/2023	03/10/2023		[NT]	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	66	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	66	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	66	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	66	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	66	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	66	<0.1	<0.1	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	66	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	66	106	116	9	[NT]	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	76	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	76	03/10/2023	03/10/2023			[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	76	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	76	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	76	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	76	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	76	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	76	<0.1	<0.1	0		[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	76	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-021	[NT]	76	113	109	4		[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334243-8
Date prepared	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			04/10/2023	1	04/10/2023	04/10/2023		04/10/2023	04/10/2023
Arsenic	mg/kg	4	Metals-020	<4	1	13	12	8	124	124
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	120	116
Chromium	mg/kg	1	Metals-020	<1	1	25	24	4	125	125
Copper	mg/kg	1	Metals-020	<1	1	31	26	18	122	130
Lead	mg/kg	1	Metals-020	<1	1	13	12	8	124	115
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	103	101
Nickel	mg/kg	1	Metals-020	<1	1	18	13	32	122	118
Zinc	mg/kg	1	Metals-020	<1	1	55	36	42	126	122

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	334243-40
Date prepared	-			[NT]	24	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	24	04/10/2023	04/10/2023		04/10/2023	04/10/2023
Arsenic	mg/kg	4	Metals-020	[NT]	24	<4	<4	0	113	122
Cadmium	mg/kg	0.4	Metals-020	[NT]	24	<0.4	<0.4	0	116	115
Chromium	mg/kg	1	Metals-020	[NT]	24	17	13	27	115	121
Copper	mg/kg	1	Metals-020	[NT]	24	11	9	20	117	129
Lead	mg/kg	1	Metals-020	[NT]	24	9	7	25	115	109
Mercury	mg/kg	0.1	Metals-021	[NT]	24	<0.1	<0.1	0	94	93
Nickel	mg/kg	1	Metals-020	[NT]	24	9	6	40	117	121
Zinc	mg/kg	1	Metals-020	[NT]	24	23	17	30	119	121

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	334243-56
Date prepared	-			[NT]	42	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	42	04/10/2023	04/10/2023		04/10/2023	04/10/2023
Arsenic	mg/kg	4	Metals-020	[NT]	42	12	12	0	120	124
Cadmium	mg/kg	0.4	Metals-020	[NT]	42	<0.4	<0.4	0	112	118
Chromium	mg/kg	1	Metals-020	[NT]	42	26	25	4	125	120
Copper	mg/kg	1	Metals-020	[NT]	42	15	17	12	116	125
Lead	mg/kg	1	Metals-020	[NT]	42	17	16	6	125	119
Mercury	mg/kg	0.1	Metals-021	[NT]	42	<0.1	<0.1	0	109	96
Nickel	mg/kg	1	Metals-020	[NT]	42	15	16	6	114	120
Zinc	mg/kg	1	Metals-020	[NT]	42	33	36	9	124	121

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	50	03/10/2023	03/10/2023			
Date analysed	-			[NT]	50	04/10/2023	04/10/2023			
Arsenic	mg/kg	4	Metals-020	[NT]	50	4	4	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	50	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	50	17	15	12		
Copper	mg/kg	1	Metals-020	[NT]	50	15	13	14		
Lead	mg/kg	1	Metals-020	[NT]	50	15	14	7		
Mercury	mg/kg	0.1	Metals-021	[NT]	50	0.5	0.5	0		
Nickel	mg/kg	1	Metals-020	[NT]	50	9	7	25		
Zinc	mg/kg	1	Metals-020	[NT]	50	65	57	13		

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	66	03/10/2023	03/10/2023		[NT]	[NT]
Date analysed	-			[NT]	66	04/10/2023	04/10/2023		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	66	7	8	13	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	66	<0.4	<0.4	0	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	66	36	37	3	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	66	18	19	5	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	66	15	16	6	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	66	<0.1	<0.1	0	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	66	20	25	22	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	66	34	35	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	76	03/10/2023	03/10/2023			[NT]
Date analysed	-			[NT]	76	04/10/2023	04/10/2023			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	76	7	8	13		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	76	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	76	31	34	9		[NT]
Copper	mg/kg	1	Metals-020	[NT]	76	18	19	5		[NT]
Lead	mg/kg	1	Metals-020	[NT]	76	16	18	12		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	76	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	76	21	24	13		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	76	29	33	13		[NT]

QUALITY	QUALITY CONTROL: Misc Inorg - Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			03/10/2023	9	03/10/2023	03/10/2023		03/10/2023	[NT]
Date analysed	-			03/10/2023	9	03/10/2023	03/10/2023		03/10/2023	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	9	8.8	8.8	0	101	[NT]

QUA	ALITY CONT	ROL: CE	:C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023	
Date analysed	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	98	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	94	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	101	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALITY CONTR	ROL: vTRH(C6-C10)/E	BTEXN in Water		Duplicate Spike Reco						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			30/09/2023	[NT]		[NT]	[NT]	30/09/2023		
Date analysed	-			01/10/2023	[NT]		[NT]	[NT]	01/10/2023		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	102		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	102		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	98		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	106		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	98	[NT]		[NT]	[NT]	99		
Surrogate Toluene-d8	%		Org-023	100	[NT]		[NT]	[NT]	100		
Surrogate 4-Bromofluorobenzene	%		Org-023	100	[NT]		[NT]	[NT]	99		

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			04/10/2023	[NT]		[NT]	[NT]	04/10/2023	
Date analysed	-			04/10/2023	[NT]		[NT]	[NT]	04/10/2023	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	64	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	69	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	71	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	64	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	69	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	71	
Surrogate o-Terphenyl	%		Org-020	86	[NT]		[NT]	[NT]	72	

QUAL	ITY CONTRO	L: PAHs ir	n Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date extracted	-			04/10/2023	[NT]		[NT]	[NT]	04/10/2023		
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98		
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102		
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103		
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112		
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109		
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	113		
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99		
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97		
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	139	[NT]		[NT]	[NT]	124		

QUALITY CONTRO	OL: Metals ir	n Waters -	- Acid extractable			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			03/10/2023	[NT]		[NT]	[NT]	03/10/2023	
Date analysed	-			03/10/2023	[NT]		[NT]	[NT]	03/10/2023	
Arsenic - Total	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	104	
Cadmium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	101	
Chromium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	97	
Copper - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	96	
Lead - Total	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	98	
Mercury - Total	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	93	
Nickel - Total	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	98	
Zinc - Total	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	97	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 334243 Page | 91 of 92 Revision No: R00

Report Comments

Samples were out of the recommended holding time for this analysis pH.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 334243-1 for Zn. Therefore a triplicate result has been issued as laboratory sample number 334243-84.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 334243-1 & 52 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Reference: 334243 Page | 92 of 92 Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	C Ridley

Sample Login Details	
Your reference	E35821PR Finley
Envirolab Reference	334243
Date Sample Received	28/09/2023
Date Instructions Received	28/09/2023
Date Results Expected to be Reported	06/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	82 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	Clay 50-120g	CEC	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH101-0.1-0.3	✓	✓	✓	✓	✓	✓	✓	✓								
BH101-0.6-0.95	✓	✓	✓				✓									
BH101-1.6-1.95																✓
BH101-3.05-3.45																✓
BH101-4.6-4.95																✓
BH102-0.02-0.2	✓	✓	✓				✓	✓								
BH102-0.6-0.95																✓
BH103-0.02-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
BH103-0.6-0.95	✓	✓	✓				✓		✓	✓	✓					
BH103-1.1-1.4																✓
BH103-1.6-1.95																✓
BH103-3-3.45																✓
BH103-5.8-6																✓
BH104-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
BH104-0.6-0.95	✓	✓	✓				✓									
BH104-1.6-1.95																✓
BH104-3.05-3.45																✓
BH104-4.6-4.95	✓	✓	✓				✓									
BH104-5.8-6.0																✓
BH105-0.05-0.2	✓	✓	✓				✓	✓								
BH105-0.55-0.8																✓
TP106-0-0.2	✓	✓	✓				✓	✓								
TP106-0.9-1.1																✓
TP107-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP107-0.7-0.9	✓	✓	✓				✓									
TP108-0-02	✓	✓	✓				✓	✓								
TP108-0.5-0.7																✓
TP109-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP109-0.7-0.9	✓	✓	✓				✓									
TP110-0-0.2	✓	✓	✓				✓	✓								
TP110-0.6-0.8	✓	✓	✓				✓		✓	✓	✓					
TP111-0-0.2	✓	✓	✓				✓	✓								

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	Clay 50-120g	CEC	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
TP111-0.7-0.9																✓
TP112-0-0.2	✓	✓	✓				✓	✓								
TP112-0.7-0.9																✓
TP113-0-0.2	✓	✓	✓				✓	✓								
TP113-0.7-0.9																✓
TP114-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP114-0.8-1	✓	✓	✓				✓									
TP115-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP115-1.1-1.3	✓	✓	✓				✓		✓	✓	✓					
TP116-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP116-0.8-1																✓
TP117-0-0.2	✓	✓	✓				✓	✓								
TP117-0.6-0.2																✓
TP118-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP118-1-1.2	✓	✓	✓				✓									
TP119-0-0.2	✓	✓	✓				✓	✓								
TP119-0.7-0.9	✓	✓	✓				✓									
TP120-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP120-0.6-0.2	✓	✓	✓				✓									
TP121-0-0.2	✓	✓	✓				✓	✓								
TP121-0.7-0.9																✓
BH122-0.05-0.2	✓	✓	✓				✓	✓								
BH122-0.6-0.95																✓
TP123-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP123-0.6-0.8	✓	✓	✓				✓		✓	✓	✓					
TP124-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP124-0.6-0.8																✓
TP125-0-0.2	✓	✓	✓				✓	✓								
TP125-0.7-09	✓	✓	✓				✓									
TP126-0-0.2	✓	✓	✓				✓	✓								
TP126-0.6-0.8																✓
TP127-0-0.2	✓	✓	✓				✓	✓								

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	Clay 50-120g	CEC	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
TP127-0.6-0.8	✓	✓	✓				✓									
TP128-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP128-0.9-1.1																✓
TP129-0-0.2	✓	✓	✓				✓	✓								
TP129-0.8-1																✓
TP130-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP130-0.5-0.7	✓	✓	✓				✓									
TP131-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP131-0.6-0.8																✓
TP132-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓								
TP132-0.5-0.7																✓
SDUP1	✓	✓	✓	✓	✓	✓	✓									
SDUP2	✓	✓	✓				✓									
SDUP3	✓	✓	✓				✓									
TS-S1	✓															
TB-S1	✓	✓	✓				✓									
FR1-HA												✓	✓	✓	✓	
TS-S2	✓															
TB-S2	✓	✓	✓				✓									

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: **ENVIROLAB SERVICES PTY LTD** JKE Job E35821PR 12 ASHLEY STREET Number: **KEnvironments** CHATSWOOD NSW 2067 P: (02) 99106200 Date Results STANDARD REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 F: 02-9888 5001 P: 02-9888 5000 1 of 4 Craig Ridley Attention: Aileen Page: Attention: Cridley@jkenvironments.com.au Sample Preserved in Esky on Ice Location: Finley **Tests Required** ОВ Sampler: Asbestos (detection) pH/CEC/Clay Sample Description Sample Container GaNEPM Combo 3aNEPM Combo 3 Combo 3 Combo 6 Date Lab Sample Depth (m) PID Sampled Ref: Number G,A 0.9 F: Silty Clay 19/09/2023 BH101 0.1-0.3 2 G,A 0.9 F: Silty Clay 19/09/2023 BH101 0.6-0.95 G,A 8.0 Silty Clay 19/09/2023 BH101 1.6-1.95 G,A 1.2 Silty Clay 19/09/2023 BH101 3.05-3.45 Silty Sandy G,A 0.8 19/09/2023 BH101 4.6-4.95 Clav F: Silty Clay G,A 1.7 19/09/2023 BH102 0.02-0.2 7 G,A 1 Silty Clay 19/09/2023 BH102 0.6-0.95 G.A 25.2 F: Silty Clay 19/09/2023 BH103 0.02-0.2 G,A 2.3 Silty Clay 19/09/2023 BH103 0.6-0.95 G,A 2.5 Silty Clay 19/09/2023 BH103 1.1-1.4 G,A 1 Silty Clay 19/09/2023 BH103 1.6-1.95 12 G,A 1.7 Silty Clay 19/09/2023 BH103 3-3.45 G,A 0.7 Silty Clay 19/09/2023 BH103 5.8-6 4 F: Silty Clay G,A 19/09/2023 BH104 0-0.2 G,A 14.3 Silty Clay 19/09/2023 BH104 0.6-0.95 EUNIKOTH 16 -Silty Clay 12 Ashley G,A 1.2 19/09/2023 BH104 1.6-1.95 Silty Clay Ph: (02) 9910 6200 G,A 1.9 19/09/2023 BH104 3.05-3.45 18 G,A 1.3 Silty Clay 19/09/2023 BH104 4.6-4.95 Date Received: G,A 0.8 Silty Clay 19/09/2023 BH104 5.8-6.0 Time Received (60 Received By: G,A 0.9 F: Silty Clay 1.0 19/09/2023 BH105 0.05-0.2 Temp: Codi/Ambient G,A 0.9 Silty Clay Opolling: line/linepack BH105 19/09/2023 0.55-0.8 F: Silty Sandy Security: Intact/Broken/None uG, A 0.7 21/09/2023 TP106 0-0.2 Clay 23 G, A 0.9 Silty Clay 21/09/2023 TP106 0.9-1.1 G,A 0.7 F: Silty Clay-21/09/2023 TP107 0-0.2 25 TP107 0.5 F: Silty Clay 0.7-0.9 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G1 - 500mL Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC PVC - HDPE Plastic Bottles A - Zinlock Ashestos Rag Relinguished By: Time: Received By: Date: 28/9/23

SAMPLE AND CHAIN OF CUSTODY FORM FROM: ENVIROLAB SERVICES PTY LTD JKE Job E35821PR 12 ASHLEY STREET Number: **JK**Environments **CHATSWOOD NSW 2067** P: (02) 99106200 Date Results STANDARD **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001
Attention: Craig Ridley 2 of 4 Attention: Aileen Page: Cridley@ikenvironments.com.au Location: Finley Sample Preserved in Esky on Ice **Tests Required** Sampler: ОВ pH/CEC/Clay content Sample Description Asbestos (detection) Sample Container Combo 3 Combo Combo 3aNEPM Сотро 3 Combo 6 Date Lab Sample Depth (m) PID Sampled Ref: Number U. F: Silty Clay G,A 21/09/2023 TP108 0-0..2 G,A 0.6 Silty Clay U 21/09/2023 TP108 0.5-0.7 28 TP109 0.9 F: Silty Clay G,A 21/09/2023 0-0.2 29 _{TP109} 1.5 G,A Silty Clay 21/09/2023 0.7-0.9 30 G,A 8.0 F: Silty Clay 21/09/2023 TP110 0-0.2 TP110 X 0.4 Silty Clay G,A 21/09/2023 0.6-0.8 G,A 0.7 F: Silty Clay 21/09/2023 TP111 0-0.2 35 G,A 0.7 Silty Clay 21/09/2023 TP111 0.7-0.9 G,A F: Silty Clay 8.0 21/09/2023 TP112 0-0.2 G,A 1.2 Silty Clay 21/09/2023 TP112 0.7-0.9 8.0 F: Silty Clay G.A 22/09/2023 TP113 0-0.2 G,A 1.2 Silty Clay 22/09/2023 TP113 0.7-0.9 ٠ ንና G,A 1.1 F: Silty Clay 21/09/2023 TP114 0-0.2 TP114 G,A 8.0 Silty Clay 21/09/2023 0.8-1 G,A 0.9 F: Silty Clay 21/09/2023 TP115 0-0.2 G,A 8.0 Silty Clay 21/09/2023 TP115 1.1-1.3 42 G,A 1.3 F: Silty Clay 21/09/2023 TP116 0-0.2 G,A Silty Clay 21/09/2023 TP116 0.8-1 G,A 0.4 F: Silty Clay 22/09/2023 TP117 0-0.2 Silty Clay G,A 22/09/2023 TP117 0.6-0.2 6.8 46 22/09/2023 G,A 0.1 F: Silty Clay TP118 0-0.2 G,A 0.4 Silty Clay 22/09/2023 TP118 1-1.2 48 G,A 0.5 F: Silty Clay 22/09/2023 TP119 0-0.2 G,A 0.4 Silty Clay 22/09/2023 TP119 0.7-0.9 50 G,A 0.4 F: Silty Clay 22/09/2023 TP120 0-0.2 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G1 - 500ml Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC PVC - HDPE Plastic Bottles V - BTEX viai ... <u>A - 7inlack Ashestas Rag</u> Received By: Date: 28/9 (23 Relinguished By: Time: Date: OB

334243

D.

SAMPLE AND CHAIN OF CUSTODY FORM FROM: ENVIROLAB SERVICES PTY LTD JKE Job E35821PR 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 P: (02) 99106200 Date Results STANDARD **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: 🗓 Attention: Aileen Page: 2 of 4 Craig Ridley Cridley@jkenvironments.com.au Location: Finley Sample Preserved in Esky on Ice **Tests Required** Sampler: OB Asbestos (detection) Sample Description Sample Container Combo GaNEPM Combo 3aNEPM Combo 3 Combo 6 Сошро 3 Date Lab Sample BTEX Depth (m) PID Sampled Ref: Number V G,A 0.6 F: Silty Clay 21/09/2023 TP108 0-0..2 U G,A Silty Clay 21/09/2023 TP108 0.5-0.7 2X | TP109 G,A F: Silty Clay 21/09/2023 0-0.2 G,A 1.5 Silty Clay TP109 21/09/2023 0.7-0.9 F: Silty Clay G,A 21/09/2023 TP110 0-0.2 х TP110 🔏 G,A 0.4 Silty Clay 21/09/2023 0.6-0.8 X 0.7 F: Silty Clay G,A 0-0.2 21/09/2023 TP1114 0.7 Silty Clay 21/09/2023 G,A TP111 0.7-0.9 G,A 8.0 F: Silty Clay TP112 21/09/2023 0-0.2 1.2 Silty Clay G,A 21/09/2023 TP112 0.7-0.9 G,A 8.0 F: Silty Clay TP113 22/09/2023 0-0.2 G,A 1.2 Silty Clay 22/09/2023 TP113 0.7-0.9 ş, ንና |_{TP114} G,A 1.1 F: Silty Clay 21/09/2023 0-0.2 [; 21/09/2023 ንፃ 8.0 Silty Clay G,A TP114 0.8-1 G,A 0.9 F: Silty Clay 21/09/2023 TP115 0-0.2 21/09/2023. G,A 0.8 Silty Clay TP115 1.1-1.3 1.3 G,A F: Silty Clay 21/09/2023 TP116 0-0.2 ï 21/09/2023 G,A 2 Silty Clay TP116 0.8-1 G,A 0.4 F: Silty Clay 22/09/2023 TP117 0-0.2 G,A Silty Clay 22/09/2023 TP117 0.6-0/2 b.9 46 G,A F: Silty Clay 22/09/2023 TP118 0.1 0-0.2 Silty Clay 22/09/2023 G,A TP118 1-1.2 22/09/2023 G,A 0.5 F: Silty Clay TP119 0-0.2 22/09/2023 0.4 Silty Clay G,A TP119 0.7-0.9 0.4 G,A F: Silty Clay 22/09/2023 TP120 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G1 - 500ml. Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC PVC - HDPE Plastic Bottles A - Ziplock Ashestos Rae Time: Date: 28/9/23 Relinquished By: Received By: Date: OB

334243

Ex.

a de

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: **ENVIROLAB SERVICES PTY LTD** JKE Job 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 STANDARD P: (02) 99106200 **Date Results** REAR OF 115 WICKS ROAD F: (02) 99106201 Required: **MACQUARIE PARK, NSW 2113** P: 02-9888 5000 F: 02-9888 5001 '3 of 4 Attention: Craig Ridley Attention: Aileen Page: Cridley@jkenvironments.com.au Finley Sample Preserved in Esky on Ice Location: **Tests Required** ОВ Sampler: Sample Description Asbestos (detection) pH/CEC/Clay Sample Container **GaNEPM** Combo 3 Combo 6 Compo 3 Combo content Date Lab Sample BTEX Depth (m) PID Sampled Ref: Number Silty Clay G,A 22/09/2023 51 TP120 0.6-0.2 х F: Silty Clay G,A 0.4 TP121 22/09/2023 0-0.2 53 G,A 0.4 Silty Clay 22/09/2023 TP121 0.7-0.9 G,A 0.9 F: Silty Clay 19/09/2023 BH122 0.05-0.2 55 GA. 0.9 Silty Clay 19/09/2023 BH122 0.6-0.95 F: Silty Ġ,Ā-5b 0.3 TP123 22/09/2023 0-0.2 Clavey Sand Silty Sandy G,A 0.4 22/09/2023 TP123 0.6-0.8 Clav Ğ,A 0.3 F: Silty Clay 58 22/09/2023 TP124 0-0.2 59 G,A 0.2 Silty Clay 22/09/2023 TP124 0.6-0.8 60 G,A 0.4 F: Silty Clay 22/09/2023 TP125 0-0.2 blà G,A 0.3 Silty Clay 22/09/2023 TP125 0.7-09 0.3 F: Silty Clay ÷, G,A 22/09/2023 TP126 0-0.2 B G,A 0.3 Silty Clay TP126 22/09/2023 0.6-0.8 ધ્ય l 0.3 F: Silty Clay 22/09/2023 TP127 G,A . 0-0.2 65 G,A 0.3 Silty Clay" TP127 22/09/2023 0.6-0.8 66 0.2 G,A F: Silty Clay 22/09/2023 TP128 0-0.2 H TP128 G,A 0.5 Silty Clay 22/09/2023 0.9-1.1 68 G,A F: Silty Clay TP129 22/09/2023 0-0.2 Silty Clay G,A 0.4 22/09/2023 TP129 0.8-1 70 G,A 0.4 F: Silty Clay 22/09/2023 TP130 0-0.2 71 G,A 0.5 Silty Clay 22/09/2023 TP130 0.5-0.7 72 G,A 0.3 F: Silty Clay TP131 22/09/2023 0-0.2 0.3 Silty Clay G,A 22/09/2023 TP131 0.6-0.8 G,A 0.3 F: Silty Clay 22/09/2023 0-0.2 G,A Silty Clay 22/09/2023 TP132 0.5-0.7 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G1 - 500mL Amber Glass Bottle V - BTEX Vial H-HNO3 Wash PVC PVC - HDPE Plastic Bottles A - Zinlack Ashestos Rac Time: Relinquished By: Date: Received By: 28/9/23 04

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job E35821PR 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 STANDARD P: {02} 99106200 Date Results REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 F: (02) 99106201 Required: P: 02-9888 5000 F: 02-9888 5001 Attention: Craig Ridley 4 of 4 Craig Ridley Attention: Aileen Page: Attention: Cridley@jkenvironments.com.au Sample Preserved in Esky on ice Location: Finley **Tests Required** Sampler: ОВ Sample Description Asbestos (detection) Sample Container Combo GaNEPM Combo 3aNEPM Combo 3 Combo 6 Combo 3 Date Lab Sample Depth (m) PID Sampled Ref: Number Duplicate 16 21/09/2023 SDUP1 G Duplicate SDUP2 21/09/2023 G Duplicate 21/09/2023 SDUP3 G Duplicate 21/09/2023 SDUP4 SEND TO VIC G Duplicate 21/09/2023 SDUP5 SEND TO VIC Duplicate G . 21/09/2023 SDUP6 SEND TO VIC 79 ٧ Spike 18/09/2023 TS-S1 80 ٧ Blank 18/09/2023 TB-S1 G1. H. V Rinsate 22/09/2023 FR1-HA 82 ٧ Spike 25/09/2023 TS-S2 どり Blank 25/09/2023 TB-\$2 84 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G1 - 500mL Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC PVC - HDPE Plastic Bottles 4 - Zinlack Ashestas Rag Relinquished By: 28/9/23 Received By:

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 39961

Client Details	
Client	JK Environments
Attention	Craig Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35821PR
Number of Samples	3 Soil
Date samples received	05/10/2023
Date completed instructions received	05/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	11/10/2023	
Date of Issue	09/10/2023	
NATA Accreditation Number 290	. This document shall not be reproduced except in full.	
Accredited for compliance with IS	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Tara White, Metals Team Leader Tianna Milburn, Senior Chemist

Authorised By

Pamela Adams, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		39961-1	39961-2	39961-3
Your Reference	UNITS	SDUP4	SDUP5	SDUP6
Date Sampled		21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	05/10/2023	05/10/2023	05/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023
vTRH C ₆ - C ₉	mg/kg	<25	<25	<25
vTRH C6 - C10	mg/kg	<25	<25	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1
Total BTEX	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	95	85

TRH Soil C10-C40 NEPM				
Our Reference		39961-1	39961-2	39961-3
Your Reference	UNITS	SDUP4	SDUP5	SDUP6
Date Sampled		21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	05/10/2023	05/10/2023	05/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	90	93	89

PAHs in Soil				
Our Reference		39961-1	39961-2	39961-3
Your Reference	UNITS	SDUP4	SDUP5	SDUP6
Date Sampled		21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	05/10/2023	05/10/2023	05/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	100	100	102

OCP in Soil		
Our Reference		39961-3
Your Reference	UNITS	SDUP6
Date Sampled		21/09/2023
Type of sample		Soil
Date extracted	-	05/10/2023
Date analysed	-	06/10/2023
alpha-BHC	mg/kg	<0.1
Hexachlorobenzene	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	0.4
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	0.4
Total +ve reported DDT+DDD+DDE	mg/kg	<0.1
Surrogate 2-chlorophenol-d4	%	90

OP in Soil		
Our Reference		39961-3
Your Reference	UNITS	SDUP6
Date Sampled		21/09/2023
Type of sample		Soil
Date extracted	-	05/10/2023
Date analysed	-	06/10/2023
Azinphos-methyl	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyrifos	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorovos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Coumaphos	mg/kg	<0.1
Disulfoton	mg/kg	<0.1
Fenamiphos	mg/kg	<0.1
Fenthion	mg/kg	<0.1
Methidathion	mg/kg	<0.1
Mevinphos	mg/kg	<0.1
Methyl Parathion	mg/kg	<0.1
Phorate	mg/kg	<0.1
Phosalone	mg/kg	<0.1
Surrogate 2-chlorophenol-d4	%	90

PCBs in Soil		
Our Reference		39961-3
Your Reference	UNITS	SDUP6
Date Sampled		21/09/2023
Type of sample		Soil
Date extracted	-	05/10/2023
Date analysed	-	06/10/2023
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-fluorobiphenyl	%	100

Acid Extractable metals in soil				
Our Reference		39961-1	39961-2	39961-3
Your Reference	UNITS	SDUP4	SDUP5	SDUP6
Date Sampled		21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil
Date digested	-	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023
Arsenic	mg/kg	6	7	8
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	24	24	24
Copper	mg/kg	16	13	14
Lead	mg/kg	17	11	10
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	15	13	15
Zinc	mg/kg	60	27	34

Moisture				
Our Reference		39961-1	39961-2	39961-3
Your Reference	UNITS	SDUP4	SDUP5	SDUP6
Date Sampled		21/09/2023	21/09/2023	21/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	07/10/2023	07/10/2023	07/10/2023
Moisture	%	9.5	8.4	7.4

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105°C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD or GC-MS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, For OCs the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore"="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CON	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						ıplicate	cate Spike Re		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023	
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	99	
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	99	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	97	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	104	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	98	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	99	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	95	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	93	[NT]		[NT]	[NT]	95	

QUALITY CON	NTROL: TRH	Soil C10	-C40 NEPM			Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			05/10/2023	[NT]	[NT]	[NT]	[NT]	05/10/2023	
Date analysed	-			05/10/2023	[NT]	[NT]	[NT]	[NT]	05/10/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	89	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	88	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	93	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	89	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	88	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	93	
Surrogate o-Terphenyl	%		Org-020	88	[NT]	[NT]	[NT]	[NT]	90	

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023		
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88		
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94		
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90		
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	96		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	98	[NT]		[NT]	[NT]	100		

QUA	LITY CONTRO	DL: OCP i	n Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023		
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Hexachlorobenzene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
oeta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98		
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80		
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86		
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88		
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
op-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90		
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
op-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate 2-chlorophenol-d4	%		Org-022/025	88	[NT]		[NT]	[NT]	92		

QU/	ALITY CONTR	OL: OP in	Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	39961-3	
Date extracted	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023	05/10/202	
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	06/10/202	
Azinphos-methyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Chlorpyrifos	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	82	84	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	78	78	
Diazinon	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	106	104	
Dichlorovos	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Dimethoate	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	114	114	
Fenitrothion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	114	117	
Malathion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Parathion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Coumaphos	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Disulfoton	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Fenamiphos	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Fenthion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Methidathion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Mevinphos	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Methyl Parathion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Phorate	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Phosalone	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Surrogate 2-chlorophenol-d4	%		Org-022/025	88	[NT]		[NT]	[NT]	92	90	

QUALIT	Y CONTRO	L: PCBs	in Soil		Duplicate Spike Re					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	39961-3
Date extracted	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023	05/10/2023
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	06/10/2023
Aroclor 1016	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	73
Aroclor 1260	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate 2-fluorobiphenyl	%		Org-022/025	98	[NT]		[NT]	[NT]	100	100

QUALITY CONT	ROL: Acid E	xtractab	le metals in soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	39961-2	
Date digested	-			06/10/2023	2	06/10/2023	06/10/2023		06/10/2023	06/10/2023	
Date analysed	-			06/10/2023	2	06/10/2023	06/10/2023		06/10/2023	06/10/2023	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	2	7	6	15	108	94	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	2	<0.4	<0.4	0	107	90	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	2	24	23	4	103	95	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	2	13	13	0	103	98	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	2	11	13	17	100	87	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	2	<0.1	<0.1	0	95	90	
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	2	13	14	7	105	92	
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	2	27	26	4	104	101	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 39961 Page | 20 of 20

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Craig Ridley

Sample Login Details		
Your reference	E35821PR	
Envirolab Reference	39961	
Date Sample Received	05/10/2023	
Date Instructions Received	05/10/2023	
Date Results Expected to be Reported	11/10/2023	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	3 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	17.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments			

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	OCP in Soil	OP in Soil	PCBsin Soil	Acid Extractable metalsin soil
SDUP4	✓	✓	✓				✓
SDUP5	✓	✓	✓				✓
SDUP6	✓	✓	✓	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: E35821PR ENVIROLAB SERVICES PTY LTD JKE Job 12 ASHLEY STREET Number: Environments CHATSWOOD NSW 2067 STANDARD P: (02) 99106200 Date Results **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 F: 02-9888 5001 P: 02-9888 5000 4 of 4 Attention: Alleen Page: Attention: Craig Ridley Cridley@ikenvironments.com.au Finley 4. Sample Preserved in Esky on Ice Location: ОВ 10 C **Tests Required** Sampler: Sample, Description Asbestos (detection) Sample Container GaNEPM Combo Combo 3 Combo 6 Combo 3 Date Lab Sample PID Depth (m) Ref: Sampled Number G Duplicate 21/09/2023 SDUP1 41 G **Duplicate** SDUP2 21/09/2023 G Duplicate 21/09/2023 SDUP3 G Duplicate SEND TO VIC 21/09/2023 SDUP4 G 21/09/2023 4,15 **Duplicate** SDUP5 SEND TO VIC 21/09/2023 G ·Duplicaté SDUP6 SEND TO VIC ν Spike 18/09/2023 TS-S1 &D TB-S1 Blank ٧ 18/09/2023 G1, H, V Rinsate 22/09/2023 FR1-HA Spike TS-S2 Blank 25/09/2023 TB-S2 - Envirolab Services 25 Research Drive Croydon South VIC 3136 Ph: (\(\frac{1}{2}\)\) 9763 2500 ٠,;٠ Received By Temp: Copkario ntacy Broken/None Security/ W. ... 4 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar G1 - 500mL Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC PVC - HDPE Plastic Bottles A - Zinlack Ashestas A Relinquished By: Received By: 28/9/23

felinauished	by: ELS SYD	_
	Sarah P	Soli
	กล/เก/วล	1220

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 334225

Client Details	
Client	JK Environments
Attention	C Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35821PR, Finley
Number of Samples	9 Water
Date samples received	28/09/2023
Date completed instructions received	28/09/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	06/10/2023	
Date of Issue	06/10/2023	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Liam Timmins, Organics Supervisor Tim Toll, Chemist (FAS) **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference		334225-1	334225-2	334225-3	334225-4	334225-5
Your Reference	UNITS	MW1	MW3	MW101	MW103	MW104
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	03/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Date analysed	-	05/10/2023	05/10/2023	05/10/2023	05/10/2023	05/10/2023
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	102	101	101	102	103
Surrogate Toluene-d8	%	100	99	100	100	100
Surrogate 4-Bromofluorobenzene	%	100	101	101	100	101

vTRH(C6-C10)/BTEXN in Water					
Our Reference		334225-6	334225-7	334225-8	334225-9
Your Reference	UNITS	GWDUP1	FR2-DIP	TS-W1	TB-W1
Date Sampled		26/09/2023	22/09/2023	25/09/2023	25/09/2023
Type of sample		Water	Water	Water	Water
Date extracted	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Date analysed	-	05/10/2023	05/10/2023	05/10/2023	05/10/2023
TRH C ₆ - C ₉	μg/L	<10	14	[NA]	<10
TRH C ₆ - C ₁₀	μg/L	<10	15	[NA]	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	15	[NA]	<10
Benzene	μg/L	<1	<1	106%	<1
Toluene	μg/L	<1	<1	102%	<1
Ethylbenzene	μg/L	<1	<1	115%	<1
m+p-xylene	μg/L	<2	<2	114%	<2
o-xylene	μg/L	<1	<1	111%	<1
Naphthalene	μg/L	<1	<1	[NA]	<1
Surrogate Dibromofluoromethane	%	102	103	103	102
Surrogate Toluene-d8	%	99	99	100	100
Surrogate 4-Bromofluorobenzene	%	100	100	94	99

svTRH (C10-C40) in Water						
Our Reference		334225-1	334225-2	334225-3	334225-4	334225-5
Your Reference	UNITS	MW1	MW3	MW101	MW103	MW104
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	<50	<50
TRH >C10 - C16	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	97	91	97	75	87

svTRH (C10-C40) in Water				
Our Reference		334225-6	334225-7	334225-9
Your Reference	UNITS	GWDUP1	FR2-DIP	TB-W1
Date Sampled		26/09/2023	22/09/2023	25/09/2023
Type of sample		Water	Water	Water
Date extracted	-	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50
Surrogate o-Terphenyl	%	65	65	72

PAHs in Water						
Our Reference		334225-1	334225-2	334225-3	334225-4	334225-5
Your Reference	UNITS	MW1	MW3	MW101	MW103	MW104
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	100	103	103	87	96

PAHs in Water				
Our Reference		334225-6	334225-7	334225-9
Your Reference	UNITS	GWDUP1	FR2-DIP	TB-W1
Date Sampled		26/09/2023	22/09/2023	25/09/2023
Type of sample		Water	Water	Water
Date extracted	-	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023
Naphthalene	μg/L	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	87	70	88

HM in water - dissolved						
Our Reference		334225-1	334225-2	334225-3	334225-4	334225-5
Your Reference	UNITS	MW1	MW3	MW101	MW103	MW104
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Arsenic-Dissolved	μg/L	4	<1	2	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	1	<1	2	<1
Copper-Dissolved	μg/L	6	1	1	<1	1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	0.06	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	24	2	6	1	3
Zinc-Dissolved	μg/L	13	18	27	10	9

HM in water - dissolved				
Our Reference		334225-6	334225-7	334225-9
Your Reference	UNITS	GWDUP1	FR2-DIP	TB-W1
Date Sampled		26/09/2023	22/09/2023	25/09/2023
Type of sample		Water	Water	Water
Date prepared	-	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023
Arsenic-Dissolved	μg/L	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	<1	110	<1
Lead-Dissolved	μg/L	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	3	<1	<1
Zinc-Dissolved	μg/L	8	6	<1

Miscellaneous Inorganics						
Our Reference		334225-1	334225-2	334225-3	334225-4	334225-5
Your Reference	UNITS	MW1	MW3	MW101	MW103	MW104
Date Sampled		26/09/2023	26/09/2023	26/09/2023	26/09/2023	26/09/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023
Date analysed	-	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023
рН	pH Units	7.0	6.5	6.8	7.1	6.9
Electrical Conductivity	μS/cm	16,000	1,600	3,100	1,500	3,500

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determinined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH(0	C6-C10)/E	BTEXN in Water		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]	
Date extracted	-			03/10/2023	7	04/10/2023	05/10/2023		03/10/2023		
Date analysed	-			05/10/2023	7	05/10/2023	06/10/2023		05/10/2023		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	7	14	17	19	108		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	7	15	18	18	108		
Benzene	μg/L	1	Org-023	<1	7	<1	<1	0	105		
Toluene	μg/L	1	Org-023	<1	7	<1	<1	0	105		
Ethylbenzene	μg/L	1	Org-023	<1	7	<1	<1	0	108		
m+p-xylene	μg/L	2	Org-023	<2	7	<2	<2	0	110		
o-xylene	μg/L	1	Org-023	<1	7	<1	<1	0	108		
Naphthalene	μg/L	1	Org-023	<1	7	<1	<1	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	101	7	103	100	3	101		
Surrogate Toluene-d8	%		Org-023	101	7	99	100	1	102		
Surrogate 4-Bromofluorobenzene	%		Org-023	101	7	100	102	2	96	[NT]	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	Duplicate			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			03/10/2023	[NT]		[NT]	[NT]	03/10/2023	
Date analysed	-			03/10/2023	[NT]		[NT]	[NT]	03/10/2023	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	80	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	71	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	80	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	71	
Surrogate o-Terphenyl	%		Org-020	85	[NT]		[NT]	[NT]	89	

QUAL	LITY CONTROL	.: PAHs ir	n Water			Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			03/10/2023	[NT]		[NT]	[NT]	03/10/2023	
Date analysed	-			03/10/2023	[NT]		[NT]	[NT]	03/10/2023	
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	77	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	83	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	68	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	93	[NT]		[NT]	[NT]	100	

Envirolab Reference: 334225

Revision No: R00

QUALITY CO	NTROL: HN	I in water	- dissolved			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	334225-2
Date prepared	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			03/10/2023	1	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	4	4	0	114	117
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	112	112
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	117	117
Copper-Dissolved	μg/L	1	Metals-022	<1	1	6	6	0	120	115
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	105	112
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	92	80
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	24	23	4	116	114
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	13	12	8	116	123

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			28/09/2023	1	28/09/2023	28/09/2023		28/09/2023		
Date analysed	-			28/09/2023	1	28/09/2023	28/09/2023		28/09/2023		
рН	pH Units		Inorg-001	[NT]	1	7.0	7.0	0	99		
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	16000	16000	0	103		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 334225 Page | 15 of 15 R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	C Ridley

Sample Login Details	
Your reference	E35821PR, Finley
Envirolab Reference	334225
Date Sample Received	28/09/2023
Date Instructions Received	28/09/2023
Date Results Expected to be Reported	06/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Holding time exceedance
No. of Samples Provided	9 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

#3- 1 x 125ml HNO3 Plastic unspecified whether filtered/unfiltered. No sediment visible in sample and assumed as filtered

Holding time exceedance pH

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoiced accordingly.

Please direct any queries to:

Aileen Hie Jacinta Hurst			
Phone: 02 9910 6200	Phone: 02 9910 6200		
Fax: 02 9910 6201	Fax: 02 9910 6201		
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au		

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	HM in water - dissolved	Hd	Electrical Conductivity
MW1	✓	✓	✓	✓	✓	✓
MW3	✓	✓	✓	✓	✓	✓
MW101	✓	✓	✓	✓	✓	✓
MW103	✓	✓	✓	✓	✓	✓
MW104	1				✓	✓
IVIVV IU4	ν .	✓	✓	✓	٧	Y
GWDUP1	∨	√	√	✓	v	٧
	1	✓ ✓	✓ ✓	<u> </u>	V	V
GWDUP1	1	✓ ✓	✓ ✓	<u> </u>		V

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB S 12 ASHLEY ST CHATSWOOD P: (02) 99106 F: (02) 99106 Attention: Ai	REET 0 NSW 20 200 201		JKE Job Number: Date Results Required:	7.1140	E35821PR STANDARD	 -				FROM: JKEnvironmen REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Cridley@jkenvironments.com							
Location:	Finley								San	ıple Pı	reserv	ed in i	Esky o	n ice			ᅥ
Sampler:	ОВ									T	ests R	equire	ed .	_			
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Сомро 2	Сотро 3	vocs	pH / EC	8 Metals	PAHs	твн/втех	ВТЕХ	Hardness			
26/09/2023	i	MW1	G1, H, V, PVC	0	Water		x		x								
26/09/2023	2	MW3	G1, H, V, PVC	0	Water		х		x				_		,		
26/09/2023	3	MW101	G1, H, V, PVC	1.5	Water		x_		x								
26/09/2023	4	MW103	G1, H, V, PVC	1.1	Water		х		x								
26/09/2023	5	MW104	G1, H, V, PVC	0.7	Water		x		x								
26/09/2023	6	GWDUP1	G1, H, V, PVC	- - · · -	Water		x_					ı	_				
26/09/2023	s/o	GWDUP2	G1, H, V, PVC	-	Water		х		SENE) το ν	iC						
22/09/2023	NZI	FR2-DIP	G1, H, V	•	Rinsate		x		ļ								
25/09/2023	78	TS-W1	v	-	Spike			_				 	x				
25/09/2023	89	TB-W1	G1, H, V, PVC	-	Blank		х									; 	
					-						EIVI	ROLATE N		fswa	12 As	ervice hley : W 206 10 626	5t
<u> </u>					-							Na:	eived	37	342 (a	25	=
					-		-				Tim	eived	elvec By		00	ا ا	
											Cos	ling:	CAHC	DECK			4.4
А	ll analysis	detection limits	CC (2000) Detection Li	mits Ple	ease	G1 V - B PVC	TEX VI	L Amb ial	er Gla		Vash P	VC	. Amb	er Gla		_	
Relinguished	1 By: () [) 7	Date: 28/9/	23	ı	Time		30		Rece	ived B Fry	v: }			Date:	<i>১</i> /৭	123

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 39962

Client Details	
Client	JK Environments
Attention	Craig Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35821PR
Number of Samples	1 Water
Date samples received	05/10/2023
Date completed instructions received	05/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	11/10/2023			
Date of Issue	11/10/2023			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Tara White, Metals Team Leader Tianna Milburn, Senior Chemist

Authorised By

Pamela Adams, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		39962-1
Your Reference	UNITS	GWDUP2
Date Sampled		26/09/2023
Type of sample		Water
Date extracted	-	06/10/2023
Date analysed	-	06/10/2023
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ -C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Total +ve Xylenes	μg/L	<1
Total BTEX in water	μg/L	<1
Surrogate Dibromofluoromethane	%	102
Surrogate toluene-d8	%	102
Surrogate 4-BFB	%	102

TRH Water(C10-C40) NEPM		
Our Reference		39962-1
Your Reference	UNITS	GWDUP2
Date Sampled		26/09/2023
Type of sample		Water
Date extracted	-	09/10/2023
Date analysed	-	09/10/2023
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Total +ve TRH (>C10-C40)	μg/L	<50
Surrogate o-Terphenyl	%	83

PAHs in Water		
Our Reference		39962-1
Your Reference	UNITS	GWDUP2
Date Sampled		26/09/2023
Type of sample		Water
Date extracted	-	09/10/2023
Date analysed	-	09/10/2023
Naphthalene	μg/L	<0.1
Acenaphthylene	μg/L	<0.1
Acenaphthene	μg/L	<0.1
Fluorene	μg/L	<0.1
Phenanthrene	μg/L	<0.1
Anthracene	μg/L	<0.1
Fluoranthene	μg/L	<0.1
Pyrene	μg/L	<0.1
Benzo(a)anthracene	μg/L	<0.1
Chrysene	μg/L	<0.1
Benzo(b,j&k)fluoranthene	μg/L	<0.2
Benzo(a)pyrene	μg/L	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1
Total +ve PAH's	μg/L	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5
Surrogate p-Terphenyl-d ₁₄	%	91

HM in water - dissolved		
Our Reference		39962-1
Your Reference	UNITS	GWDUP2
Date Sampled		26/09/2023
Type of sample		Water
Date prepared	-	06/10/2023
Date analysed	-	06/10/2023
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	3
Lead-Dissolved	μg/L	<1
Nickel-Dissolved	μg/L	1
Zinc-Dissolved	μg/L	16
Mercury-Dissolved	μg/L	<0.05

Method ID	Methodology Summary
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	111	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	111	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	109	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	111	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
Surrogate Dibromofluoromethane	%		Org-023	101	[NT]		[NT]	[NT]	99	
Surrogate toluene-d8	%		Org-023	103	[NT]		[NT]	[NT]	102	
Surrogate 4-BFB	%		Org-023	103	[NT]		[NT]	[NT]	104	

QUALITY CONTROL: TRH Water(C10-C40) NEPM					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			09/10/2023	[NT]		[NT]	[NT]	09/10/2023	
Date analysed	-			09/10/2023	[NT]		[NT]	[NT]	09/10/2023	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	77	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	101	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	107	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	77	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	101	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	107	
Surrogate o-Terphenyl	%		Org-020	72	[NT]		[NT]	[NT]	73	

QUAL	ITY CONTRO	_: PAHs ii	n Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			09/10/2023	[NT]		[NT]	[NT]	09/10/2023	
Date analysed	-			09/10/2023	[NT]		[NT]	[NT]	09/10/2023	
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	123	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	129	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	136	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	137	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	125	
Benzo(b,j&k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	136	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	84	[NT]		[NT]	[NT]	103	

QUALITY CO	NTROL: HN	l in wate	r - dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	39962-1
Date prepared	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	06/10/2023
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	06/10/2023
Arsenic-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	100	102
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]		[NT]	[NT]	99	101
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	99	98
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	98	96
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	95	96
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	99	96
Zinc-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	101	103
Mercury-Dissolved	μg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]		[NT]	[NT]	105	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 39962 Page | 12 of 13 R00

Report Comments

Samples received in good order: No, VOC vials have headspace

Envirolab Reference: 39962
Revision No: R00
Page | 13 of 13

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Craig Ridley

Sample Login Details		
Your reference	E35821PR	
Envirolab Reference	39962	
Date Sample Received	05/10/2023	
Date Instructions Received	05/10/2023	
Date Results Expected to be Reported	11/10/2023	

Sample Condition	
Samples received in appropriate condition for analysis	No, VOC vials have headspace
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	16.9
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Tests/Analytes BTEX and/or vTRH and/or VOC were received in vials and/or bottles with observable headspace. Tests/Analytes TRH (C10-40) and PAH have exceeded the recommended technical holding times.

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoiced accordingly.

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Water	TRH Water(C10-C40) NEPM	PAHs in Water	HM in water - dissolved
GWDUP2	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job F35821PR 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 P: (02) 99106200 Date Results STANDARD REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 1 of 1 Attention: Cridley@jkenvironments.com.au Location: Finley Sample Preserved in Esky on Ice Tests Required Sampler: ОВ Sample Description Combo 2 Compo 3 Hardness **FRH/BTE** 8 Metals Date Lab Sample VOCs PAHS BTEX PID Sample Containers Sampled Ref: Number G1, H, V, PVC 0 Water 26/09/2023 MW1 G1, H, V, PVC 0 Water 2 26/09/2023 MW3 3 G1, H, V, PVC 1.5 Water 26/09/2023 MW101 G1, H, V, PVC 1.1 Water 26/09/2023 MW103 5 G1, H, V, PVC 0.7 Water 26/09/2023 MW104 Water G1, H, V, PVC ---26/09/2023 GWDUP1 S/o G1, H, V, PVC Water 26/09/2023 GWDUP2 SEND TO VIC G1, H, V Rinsate 22/09/2023 Spike 25/09/2023 TS-W1 G1, H, V, PVC Blank 25/09/2023 TB-W1 Envirolab Services 12 Ashley St Chatswood NSW 2007 Envirolab Services

ยา์ที่ให้ดนใ

Date Received Time Redelved Redeived

Temp: Carino

Cooling:

Security:

G1 - 500mL Amber Glass Bottle G2 - 1L Amber Glass Bottle

Received By:

H - HNO3 Wash PVC

Sample Containers:

1600

PVC - HDPE Plastic Bottles

V - BTEX Vial

Time:

Ph: (b2) 9910 6200

334225

28/9/23

en/None

Date:

28/9/23

/Bre

felinquished by: ELS SYD Sarah P Sale 03/10/23,1220

: Ice/cepack

Remarks (comments/detection limits required):

Intacut roken None

25 R<mark>esearch Orive</mark>

Ph: (03) 9763 2500

Croydon South VIC 3136

All analysis PQLs to ANZECC (2000) Detection Limits Please

28/9/23

Date R

Temp:

Cooling

Security

Relinquished By:

Appendix F: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²¹. The NEPM (2013) is consistent with these documents.

A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

²⁰ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. Blanks

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. INTRODUCTION

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in the SAQP attached in Appendix J of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table Q1 to Table Q2 inclusive) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report. A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Number Analysed	Frequency (of Sample Type)
Intra-laboratory duplicate (soil)	3	Approximately 5% of primary samples
Inter-laboratory duplicate (soil)	3	As above
Intra-laboratory duplicate (groundwater)	1	Approximately 20% of primary samples
Inter-laboratory duplicate (groundwater)	1	As above
Trip spikes		Two soil trip spikes and one water trip spike for the investigation to demonstrate adequacy of
Soil	2	preservation, storage and transport methods
Water	1	
Trip blanks		Two soil blanks and one water blank for the investigation to demonstrate adequacy of storage and
Soil	2	transport methods
Water	1	
Rinsate		One soil equipment rinsate and one water equipment rinsate for the investigation to demonstrate adequacy
soil (Hand Auger)	1	of decontamination methods

Sample Type	Number Analysed	Frequency (of Sample Type)
Water (IP Probe)	1	

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

All results less than PQL.

B. <u>DATA EVALUATION</u>

1. <u>Sample Collection, Storage, Transport and Analysis</u>

Samples were collected by trained field staff in accordance with our standard sampling procedures. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken generally in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies. Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

JKE note that the temperature on receipt of the inter-laboratory duplicate soil and groundwater samples was reported to be up to 17°C. JKE understand that the temperature is measured at the laboratory using an infrared temperature probe by scanning the outside of the sample container (i.e. one sample jar/container at the time of registering the samples). This procedure is not considered to be robust as there is a potential for the outside of the jar to warm to ambient temperature, or at least to increase from that of the internal contents, relatively quickly. JKE consider it is possible that the increase in temperature for the interlaboratory duplicate samples may also be attributed to the length of time in transit to the secondary laboratory which is based in Victoria. However, based on the BTEX and TRH (F1 and F2) concentrations reported for the primary samples, JKE consider this does not adversely impact on the validity of the data set as a whole. We also note that the trip spike results were acceptable, indicating the field/transport preservation was appropriate.

The laboratory analysis was generally undertaken within the specified holding times. The following exceedances of holding times were identified:

- Report 334225 The analysis of pH in water samples was undertaken approximately 1-2 days beyond the recommended holding time of 24hrs. The delay in analysis was associated with the remote location of the site in relation to the analytical laboratory. As the samples were stored in appropriate conditions (i.e. chilled) and considering the good correlation between the field measurements during sampling and the analytical results, JKE consider it is unlikely that the pH of the water samples would change dramatically and the results are sufficiently reliable for the purpose of this assessment;
- Report 334243 The analysis of pH in soils was undertaken approximately one week beyond the recommended holding time. JKE note that the pH analysis was undertaken to establish site-specific EILs. The delay in analysis was associated with the length of the field work program and remote location of the site in relation to the analytical laboratory. As the samples were stored in appropriate conditions (i.e. chilled), and the results indicated the soils to be neutral to basic, JKE consider it is unlikely that the pH of the soil sample would change dramatically and that the results are sufficiently reliable for the purpose of establishing site-specific EILs; and
- Report 39962 The analysis of TRH (C_{10} - C_{40}) and PAH in water samples was undertaken approximately one week beyond the recommended holding time. The delay in analysis was associated with the

remote location of the site in relation to the secondary analytical laboratory and logistical delays associated with public holidays. JKE note there is potential for some low molecular weight PAHs and the shorter chain TRH compounds (i.e. within the F2 range) to have undergone some degradation in this time. However, JKE note the results were consistent with the analysis of the primary samples which were undertaken within the holding times. On this basis, JKE consider this does not adversely impact on the validity of the data set as a whole.

The laboratory noted that the inter-laboratory duplicate water samples included observable headspace within the vials and/or bottles for BTEX and volatile TRH analysis (Report 39962). JKE subsequently discussed this with the laboratory and were advised that the bottles for TRH analysis included observable headspace within some of the bottles for TRH analysis however, JKE had submitted surplus volume in appropriate bottles that did not contain headspace. JKE were verbally informed by the laboratory staff that the analysis would be conducted on the sample portion (i.e. bottles) that did not contain observable headspace. On this basis, JKE consider this does not adversely impact on the validity of the data set as a whole.

JKE note a few minor transcription errors in relation to depth intervals of samples and sampling dates were recorded on the COC. These were generally corrected however, the sample collected from TP120 (0.6-0.8m) was recorded on the COC and subsequent laboratory reports as TP120 (0.6-0.2m) and the water equipment rinsate sample (FR2-DIP) collected on 26 September 2023 was recorded as being collected on 22 September 2023. JKE consider these transcription errors are minor and does not affect the quality of the dataset as a whole or the outcome of the investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC with the exception of the anthracene PQL for groundwater analysis which was 10 times greater than the ecological SAC. In light of the PAH concentrations reported for soil and groundwater, JKE is of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the investigation.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for arsenic and lead in SDUP5/TP116 (0-0.2m);
- Elevated RPDs were reported for dieldrin (an OCP compound), copper and lead in SDUP6/TP114 (0-0.2m);
- An elevated RPD was reported for copper in GWDUP1/MW104; and
- Elevated RPDs were reported for several metals in GWDUP2/MW3.

Values outside the acceptable limits have been attributed to results close to the PQLs for the water samples. In relation to the soil samples, values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. As both the primary and duplicate sample results were compared to the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Trip Blanks

During the investigation, two soil trip blanks and one water trip blank were placed in the eskies during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

The soil trip blank analysis results were all less than the PQLs with the exception of chromium, lead and zinc with reported concentrations ranging from 3mg/kg to 4mg/kg. Low level metals concentrations are typical in washed sand which is utilised as blank material. In JKE's experience, the concentrations reported were consistent with background concentrations in a sand matrix and were not indicative of cross-contamination. On this basis, cross contamination between samples that may have significance for data validity did not occur.

The water trip blank analysis results were all less than the PQLs, therefore cross-contamination between samples that may have significance for data validity did not occur.

Rinsates

Within the soil equipment rinsate sample (FR-HA), all results were below the PQL with the exception of copper, which was reported to be 0.1 mg/L ($100 \mu \text{g/L}$). Within the water equipment rinsate sample (FR2-DIP), all of the results were below the PQL with the exception of TRH F1, copper and zinc, which were reported to be $15 \mu \text{g/L}$, $110 \mu \text{g/L}$ and $6 \mu \text{g/L}$ respectively.

Low concentrations of copper and zinc are typical within potable water (which is utilised in the decontamination process) and is likely associated with copper and zinc pipe and fittings within the supply infrastructure. The detectable concentration of light fraction TRH is most likely attributed to trihalomethanes. These compounds are breakdown products from the chlorination process and are common in potable water at the concentration reported. JKE note that the Australian drinking water guideline for copper, zinc and trihalomethanes are 2mg/L ($200\mu g/L$), 3mg/L ($300\mu g/L$) and $250\mu g/L$ respectively.

On this basis, cross contamination between samples that may have significance for data validity did not occur.

Trip Spikes

The results ranged from 96% to 102% for the soil trip spike and from 102% to 115%. These results indicated that field preservation methods were appropriate.

4. Laboratory QA/QC

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation. A review of the laboratory QA/QC data identified an elevated RPD was reported for zinc in one soil sample. The laboratory subsequently issued the result as a triplicate sample.

The laboratory QA/QC non-conformances were considered to be minor in the context of the overall dataset. JKE considered all primary and laboratory duplicate and triplicate results, therefore the DSI risk assessment was considered to be appropriate.

C. <u>DATA QUALITY SUMMARY</u>

JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These non-conformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event undertaken for the investigation. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods. However, given the low contaminant concentrations reported, the site history and the surrounding land uses, this is not considered to alter the conclusions of the investigation.

Appendix H: Field Work Documents

PID FIELD CALIBRATION FORM

Client:	Health Infrastructure				
Project:	Proposed Alterations and A	dditions			
Location:	Finley Hospital, 24 Dawe Av	enue, FINLEY, NSW			
Job Number:	E35821PR				
	Р	ID			
miniRAE LITE Make:	RA E Model:	Unit: 2	Date of last factory calibration: (7/5/23		
Date of calibration:	Proposed Alterations and Additions Finley Hospital, 24 Dawe Avenue, FINLEY, NSW E35821PR PID Model:				
Calibration gas: Iso-butylen	е	Calibration Gas Concentration	on: 100.0 ppm		
Measured reading: 100	2 ppm	Error in measured reading:	± 02 ppm		
Measured reading Acceptab	ole (Yes/No): Yes				
	Р	ID			
Make:	Model:	PID Unit: Calibration: Name of Calibrator: Calibration Gas Concentration: 100.0 ppm Error in measured reading: ± ppm PID PID Date of last factory calibration: Name of Calibrator: Calibration Gas Concentration: 100.0 ppm			
Date of calibration:		Name of Calibrator:			
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm		
Measured reading:		Error in measured reading:	± ppm		
Measured reading Acceptab	ole (Yes/No):				
	Р	ID			
Make:	Model:	Unit:	·		
Date of calibration:		Name of Calibrator:			
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm		
Measured reading:	ppm	Error in measured reading:	± ppm		
Measured reading Acceptab	ole (Yes/No):				
	Р	ID			
Make:	Model:		Date of last factory calibration:		
Date of calibration:		Name of Calibrator:			
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm		
Measured reading:		Error in measured reading:	± ppm		
Measured reading Acceptab	ole (Yes/No):				
	P	ID			
Make:	Model:	Unit:	Date of last factory calibration:		
Date of calibration:		Name of Calibrator:			
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm		
Measured reading:		Error in measured reading:	± ppm		
Measured reading Acceptab	ole (Yes/No):				

WATER QUALITY METER CALIBRATION FORM

ucture	
ations and Additions	
, 24 Dawe Avenue, FINL	EY, NSW
ISSOLVED OXYGEN	
Model:	
Name of Calibrator:	OB
рН	
Model: 4	
	33
Expiry date: 01 124	Lot No: 3931/3
Expiry date: 03 124	Lot No: (C (80523
Measured reading Acce	eptable (Yes/No): / e (
EC	l ,
Model: 🕈	
ator: OB	Temperature: 15 °C
Expiry date: 02 /2 4	Lot No: (7210223
n container): 1143	μS/cm
Measured reading Acce	ptable (Yes/No): 1/0 P
REDOX	
Model: 4	
Name of Calibrator:	08
	Lot No: 869
Measured reading Acce	ptable (Yes/No): \(\frac{\eartile}{\eartile} \)
	pH Model: 4 Name of Calibrator: Expiry date: 01/24 Expiry date: 02/24 Model: 4 Masured reading Acce EC Model: 4 An container): 1/43 Measured reading Acce EXPIREDOX Model: 4 Name of Calibrator: 2/24 REDOX Model: 4 Name of Calibrator: 2/24 REDOX Model: 4 Name of Calibrator: Expiry date: 02/27

Client:	Health Inf	rastructure				Job No.:	E3582	21PR
Project:	Proposed	Alterations	s and Additions			Well No.:	W	unl
Location:	Finley Ho	spital, 24 D	awe Avenue, FINLEY, NS	W		Depth (m):	4	4-9
WELL FINISH								
∠ Gatic Co			Standpipe				Other (descri	ibe)
WELL PURGE DETA	ILS:	1 2						
Method:		10vista	the fump		SWL - Be	fore:	4 55	
Date:		*	(23		Time – Be	fore:	12:40	
Undertaken By:		03			Total Vol	Removed:	0-55 L	1
Pump Program No:		Lou		material in the court of the	PID (ppm)	•	0.0	
PURGING / SAMPLIN	IG MEASUR	EMENTS						
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
12:49 (3)	4-60	0-2		24-6	1.0	9029	5.48	75.6
12:52 (6)	A-64	0 4	Coump slowed	23.9	0.5	15549	5-81	-4-2
12:55 (9)	4-68	0-5	(pump = slowest setting		0.5	15732	6-07	-6.6
17:58 (12)	4-70	0-55	U	24 4	0.4	15916	6.12	-4.6
*****************	*	**********	***************************************					
****************		************	************************	************				
			***************************************			***************************************		
		*********	***********************			*************		
			***************************************			***************************************		
	7							
	Shork	Same	ling threat	1/15	sug	water		
						,		

·								
				250-2534115940	unnersonannn)		
	0.0 806000000000000000000000000000000000							
*******************		***************************************	***************************************				*************	
******************					***********			·····

Comments: Odours (YES / NO	, NAPL/P	SH (YES / NO), Sheen (YES	5 / NO), St	eady State	Achieved (YES	s / NO)	
Sampling Contai	ners Used: '	x glass a	mber, 4 x BTEX vials, { x h	INO3 plast	ic. x H2S	04 plastic. / ¥	unpreserved :	olastic
1			dear, slow			P.Mono, (V		
ested By: Oisin Butle		Lances	Remarks:	160	200			
			- Steady state conditions					
Date Tested: 26/9	125		- difference in the pH less			ence in condu	ctivity less tha	ın 10%
Checked By: CR	7077		10% and SWL stable/not	in drawdo	wn			- 1

Client:	Health Int	rastructure				Job No.:	F252	21PR
		******	and Additions		осенные оппасы			
Project: Location:			and Additions awe Avenue, FINLEY, N	 SW		Well No.: Depth (m):		<u>n w3</u>
WELL FINISH					_		ř	
Gatic Co	over		Standpip	00			Other (desc	ribe)
WELL PURGE DETA							outer (dood	11007
Method:		Pericia	Hic Pump		SWL - Be	fore:	3 69	
Date:		26/0			Time – Be	fore:	09:15	
Undertaken By:		03		,	Total Vol	Removed:	0-91	*****
Pump Program No:		Lon	,		PID (ppm)		0.0	
PURGING / SAMPLI	NG MEASUR							
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	(mg/L)	EC (µS/cm)	рН	Eh (mV)
9.20 (3)	3.73	0.1	***************************************	16 7	10-3	35 8	6.31	2090
9:23 (6)	3-75	0.3	***************	16.8	4.9	1458	6.29	192.1
9:26 (9)	3.79	0.5		16 8	4.7	1503	6-25	2015
9-29 (12)	3.79	0.7		17.0	4.4	1451	6.25	203.2
9:32 (15	3.79	09		17 0	4.3	1443	6.23	7.04.8
	s Radi	Shal	e achieved -	Shaxt	Samj	lang	**************	

Sampling Conta /SI used: 4	iners Used:4	x glass ar	nber, (x BTEX vials, 2.2) Remarks: - Steady state condition	K HNO3 plast	tic, x H2S	O4 plastic, 2 x	GWP WP unpreserved	2 I plastic
Checked By: C	9 /23 R 0/2023		- difference in the pH le 10% and SWL stable/r	ess than 0.2		rence in condu	ctivity less th	nan 10%

						-		
Client:		rastructure		*************		Job No.:	E358	21PR
Project:	Proposed	Alterations	and Additions			Well No.:		im101
Location:	Finley Ho	spital, 24 Da	awe Avenue, FINLEY, N	SW		Depth (m):		5.70
WELL FINISH							- ka	
∠ Gatic Co			Standpi	pe			Other (desc	ribe)
WELL PURGE DETA	ILS:							
Method:		Peristan	HIC Pamp		SWL – Be	fore:	3.67	
Date:		26/9	123		Time – Be	fore:	13:48	
Undertaken By:		08			Total Vol	Removed:	0.81	
Pump Program No:		LOW	************************		PID (ppm)		1.0	
PURGING / SAMPLIN	IG MEASUR	EMENTS						
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
13:5A(3)	3-67	0-2		21.2	1.6	336 1	5-87	14.0
13.57 (6)	3.67	0.4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21.6	0-8	3196	6.09	29.8
14:00 (9)	3.67	0 6		216	0.8	3147	6.14	32.8
14:03 (12)	3 67	0.8		21-2	0-7	3110	6.13	35.9
.k		<u> </u>						199

	************		***************************************					
	,							
	shedy	State	achieved -	start	Sam	pline	************	
	/		***************************************					
				THE PROPERTY OF SHEET PROPERTY	- INHEROVANISCOS EOCH	110.00 (3.0) (7.1.2.3.3.3.0)		
		SATES PROPERTY OF STREET						1
			***************************************					·
			*************	1				
		T	******************					1
			***************************************				***************************************	

************		-		4				
	م. ـ ـ							- Anna California
	ners Used:		nber, (x BTEX vials, x	t HNO3 plasti	c, x H2S6	O4 plastic, \x	unpreserved	plastic
Fested By: Oisin Butle		Unicipality vision recommend	Remarks:	7- G 1000-	7 `	Condo		
Date Tested: 1 (19 173		- Steady state condition					
70	11107		difference in the pH le			ence in condu	ctivity less th	an 10%
Checked By: CR	107วกวว		10% and SWL stable/n	ot in drawdov	wn			

JKEnvironments Client: Health Infrastructure Job No.: E35821PR Project: Proposed Alterations and Additions Well No.: my 103 Location: Finley Hospital, 24 Dawe Avenue, FINLEY, NSW Depth (m): WELL FINISH Gatic Cover Standpipe Other (describe) **WELL PURGE DETAILS:** Method: SWL - Before: Peristalfic Pumn 3.69 Date: Time - Before: 10:53 Undertaken By: Total Vol Removed: Pump Program No: PID (ppm): **PURGING / SAMPLING MEASUREMENTS** DO Time (min) SWL (m) Notes Vol (L) Temp (°C) EC (µS/cm) Eh (mV) (mg/L) 56 21.8 1544 21.8 1-6 1518 5.91 150 0 1496 6.25 1487 20.9 6.29 2

Comments: Odours (YES //NO), NAPL/PSH (YES / NO), Sheen (YES / NO), Steady State Achieved (YES / NO)

Sampling Containers Used: $\angle x$ glass amber, $\angle x$ BTEX vials, ℓ x HNO3 plastic, x H2SO4 plastic, ℓ x unpreserved plastic YSI used: brown, moderate 9/04 Tested By: Oisin Butler Remarks:

- Steady state conditions Date Tested:

Checked By:

Date:

- difference in the pH less than 0.2 units, difference in conductivity less than 10% 10% and SWL stable/not in drawdown

						722		-
Client:	Health Inf	rastructure				Job No.:	E35	821PR
Project:	Proposed	Alterations	and Additions			Well No.:		mw 10+
Location:	Finley Ho	spital, 24 D	awe Avenue, FINLEY, NS	W		Depth (m):		5,- 2
WELL FINISH	•							
✓ Gatic Co			Standpipe				Other (des	cribe)
WELL PURGE DETA	ILS:							
Method:			othe Pump		SWL – Be	fore:	3.64	
Date:		26 /	9/23		Time – Be	fore:	08.0	8
Undertaken By:		03		***********	Total Vol	Removed:	0-42	5 Z
Pump Program No:		Lou	,		PID (ppm)	:	6.7	
PURGING / SAMPLIN	IG MEASUR	EMENTS						
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
08:11 (3)	3.75	0-125	(pump slowed)	15.7	2.4	1712	6.64	231.6
08:14 (6)	3.75	0-2		15.5	1-7	3113	6-68	235.6
08:17 (9)	3 75	0-275	***********************	15.6	1-8	3013	6.67	238 - 5
08.20 (12)	3.75	0 35		15.7	1-8	2975	6.64	241-4
08 - 23 (15)	3 · <i>15</i>	6-425		15.9	20	2964	6.61	239-4
	-		******************************					
	sheady	slah	o achieved -	Short	sampla	ML		
			***************************************		**********	<u> </u>		

	VEC / 1/2	NA /	NI (VEQ. 1 (GE) 2:				1	
		1 x glass ar	mber, 8 x BTEX vials, 2 x l	HNO3 plasti	ic, x H2S	O4 plastic, 2 x	() unpreserve	(v7) w/ d plastic
ested By: Oisin Butle		- ('' (Remarks:	MONOR	- Arr	1 e man	٧	
Date Tested: 2(19 123		- Steady state conditions - difference in the pH les		units, differ	ence in condu	ctivity less t	than 10%
Checked By: CR	123		10% and SWL stable/no				•	

WATER QUALITY METER CALIBRATION FORM

Client: Health Infrastro	ucture	
	rations and Additions	
Location: Finley Hospital,	, 24 Dawe Avenue, FINL	EY, NSW
Job Number: E35821PR		
D	DISSOLVED OXYGEN	
Make:	Model:	
Date of calibration:	Name of Calibrator:	
Span value: 70% to 130%		
Measured value: 97°/6		
Measured reading Acceptable (Yes/No): γρ ς		
	рН	
Make: Vf. (Model: 4	
Date of calibration: 20/9/23	Name of Calibrator: 0	B
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 01/24	Lot No: 293113
Buffer 2: Theoretical pH = 4.01± 0.01		Lot No: ((180523
Measured reading of Buffer 1: 7-30		
Measured reading of Buffer 2: 4 - 6		
Slope:	Measured reading Acce	eptable (Yes/No): /o(
	EC	
Make: \\St	Model: 4	
Date: 20/9/23 Name of Calibra	ator: OB	Temperature: 20 °C
		Lot No: (7 210 223
Theoretical conductivity at temperature (see solutio		μS/cm
Measured conductivity: \160 μS/cm	Measured reading Acce	eptable (Yes/No): YOQ
	REDOX	,
Make: γς (Model: 4	
Date of calibration: $20/9/73$	Name of Calibrator: /	5B
Calibration solution: JANNA	Expiry date: 09 /77	Lot No: 9169
Theoretical redox value: 240mV		
Measured redox reading: 235 ⋅ 6 mV	Measured reading Acce	eptable (Yes/No): Yor

Project: Propos	Infrastructure			Job No.	:	E35821PR
Project. Topos	ed Alterations and Ad	ditions		Well No		mul
Location: Finley	Hospital, 24 Dawe Ave	enue, FINLEY, NS	w	Depth (r	 n):	9.9
WELL FINISH DETA	AILS			Tapan (1 - 1
		1				
WELL DEVELOR	Gatic Cover	St	andpipe		Other (de	scribe)
WELL DEVELOPMI Method:		. No marker t	lour -			
Date:		19/13		efore (m):		3.69
Undertaken By:		69	Time - B	***************************************		12:05
Total Vol. Removed	****	SL	SWL - A			4.70
PID Reading (ppm)		0-0		iter.		12:17
Comments:		0-0				
DEVELOPMENT ME						
Volume Rem	oved	emp (°C)	DO	EC	p	H Eh (n
(L)			(mg/L)	(µS/cm)	-	
2	***************************************	7	2.6	10958	7-1	
<u>2</u>		7.5	2.6	10383	7 -	***************************************
		f = 12	3-2	10726	76	20.6
- GW was	soopi t	punyoe ruk b (es 7	Offect	mwg	9	
				· · · · · · · · · · · · · · · · · · ·	***********	
SI Used: 4	OB.	Remarks: - Steady state - Difference in	conditions	0.2 units, difference	recu	
omments:Odours (SI Used: ested By: ate Tested:	M-4 51/f	Remarks: - Steady state - Difference in and SWL state	conditions the pH less than	0.2 units, difference	in the condu	harge

Jŀ	(E	nv	irc	on	m	en	ts				
Client:	Health Infra	astructure						Job No.	:		E35821PR
Project:	Proposed A	Alterations	and Addition	ns			**********	Well No	.:	**********	Imw3
Location:	Finley Hos	pital, 24 Da	we Avenue	e, FINLEY	, NSW			Depth (r	m):	***********	5.0
WELL FINI	SH DETAILS	3									<u> </u>
		Gatic Co	ver 🗵		Standpip	e 🗆			Other (de	escribe)	7
WELL DEV	ELOPMENT	DETAILS							10 11101 (000	Suridey L	
Method:			Terelon	arent	Paup	SWL - Be	fore (m):	0		3.0	6
Date:			20/9	123	7	Time - Be	fore:				20
Undertaker	n By:		BB			SWL - Aft	er (m):	***********		4.	7 (
Total Vol. F	Removed:			L		Time - Aft	er:	************	*************	11:	******************************
PID Readin	ıg (ppm):		0.	1							×
Comments											
	MENT MEAS		rs			20					
VOIC	(L)	ea	Temp	(°C)	0.55	00 ig/L)	100 - 2	EC 5/cm)	р	Н	Eh (mV)
	1		17.	?	5.		5		1	40	113.1
	5		17	5	5-	*************	40		5		1114.1
	6	***************************************	17		5 -		AC	**********	6.1		1171
*************	*********			.)					D&	-I	/
			***************************************		·····					220000000000000000000000000000000000000	·
		1			**********				†	*******	<u> </u>
***************************************	*************			**********	************	************			·		
***************************************	****************	······†	well	011	mpea	01	echi	oli	dry	ARTHUS SAN	†
				pss	1217	1	DUY.LY.	****	Tary.	*********	
			************						·		
**********	*************				†				+		.
•••••					!		**********	*******		**********	
***********			***********	*******		**********					

			**********	************		************		*********	!		
**********		t	************		·				·		
	***************************************						***********		·		
				*****		**********			 		
***************************************							•••••				
							HANESSHEET.			***********	***************************************
				************				•••••	 		

comments:	Odours (YE	S / NO).	NAPL/PS	SH (YES	NO) She	en (YES /	NO) Ste	adv State	Achieved (YES I'N	DV DV
'SI Used:		_			_				harge		,
ested By:		03		Remarks	12						
Date Tested:		29/9	123	SteadyDifferer	state condi			difference	e in the cond	uctiveity (ess than 10%
hecked By:		CR	**********	- Minimui	m 3 monitor	ing well volu	ımes purç	ged, unles	ss well purge	d until it is	s effectively dry
ate:	- 19	31/10/	/2023	1							

Proposed Allerations and Additions	Client:	Health Infrastructu	re			Job N	lo.:		E35821PR
Partic Partic Addition Partic Addition Partic Addition Partic Part	roject:	Proposed Alteratio	ns and Addition	ns		Well I	 No.:		I MMIRI
Standpips	ocation:	Finley Hospital, 24	Dawe Avenue	e, FINLEY, I	NSW	Depth (m):			
Satic Cover Standpipe	VELL FINIS	SH DETAILS							J W
									_
					Standpipe 🔲		Other (de	scribe)	
Date		ELOPMENT DETAI							
Indextaken By:			17 evo/	coment					
Time				17.3				06:	1 <i>G</i>

DO			60	. <i>L</i>	Time – A	fter:		08:5	5
Volume Removed (L)			NTC						
(L) Temp (*C) (mg/L) (µS/cm) pH Eh (mV)	Charles and the Control of the Contr	Contract Con			no	I FC			r
			Temp) (°C)	_		p	Н	Eh (mV)
		L	17.1				7.	22	177-1
10		5				14			156.7
15	***************************************	10				2073		**********	
20			18.1			7046	6.9	28	
18 18 15 2058 6 95 92 9 30 19 7 0 9 2058 6 93 84 2 35 18 9 1 5 2058 5 91 73 5 40 18 7 12 2027 6 59 69 7 7 5 6 7 2058 7 02 67 7 5 5 0 18 7 0 9 2049 6 9 7 5 0 65 0 65 0 65 0 6 0 18 7 0 9 2049 6 9 7 5 7 6 7 2046 6 9 7 5 7 6 7 2046 6 9 7 5 7 7 7 7 7 7 7 7									
30		15							92.9
18 8 15 2058 6.91 735 40					1.9	2053		*********	
18		******************		7	1-5				
45					1.5				
Steady State active Steady State Achieved (YES / NO)				-	and the second second		7.0	7	77.5
Sheady Shire achieved (YES / NO), NAPL/PSH (YES / NO), Sheen (YES / NO), Steady State Achieved (YES / NO) SI Used: 4 Remarks: - Steady state conditions - Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%				7					65.0
Sheady State achieved (YES / NO), NAPL/PSH (YES / NO), Sheen (YES / NO), Steady State Achieved (YES / NO) Si Used: 4 Bemarks: - Steady state conditions - Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%								***********	
Steady State achieved Steady State achieved (YES / NO), NAPL/PSH (YES / NO), Sheen (YES / NO), Steady State Achieved (YES / NO) SI Used: 4 Remarks: - Steady state conditions - Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%									
ested By: Steady state Conditions Steady State Achieved (YES / NO)		**********					D.:		7
ested By: Steady state Conditions Steady State Achieved (YES / NO)									
ested By: Steady state Conditions Steady State Achieved (YES / NO)					***************************************	***************************************	*****		
ested By: Steady state Conditions Steady State Achieved (YES / NO)	*****	******	Sloadi	1 01	60 och	ADS DA			
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%			Or cons	(219	<u> </u>	E GEV V.V.			
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%						***************************************	****		
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%	********	****	**********		***************************************	****************			
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%						-			
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%									
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%		***************************************			*****************	•		**********	
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%	omments:	Odours (YFS / N	IO). NAPI /P	SH (YES /	NO) Sheen (YES	//NO) Steady St	ate Achieved	(VEQ / N	0)
ested By: Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%		Ursh	5111 1	nad . 1	OF SMIN	Cost	01.0.00	((3)	-,
- Steady state conditions - Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%	SI Used: 4	· July	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.000		tast 101	charge		
- Steady state conditions - Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%									
- Steady state conditions - Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%	ested By:	0/4		Remarks				_	
ale resieu.									
and SWL stable/not in drawdown	ate Tested:	20/9	173	100			ence in the con-	ductiveity l	ess than 10%
			/	and SWL	stable/not in drawdo	own			
	hecked By:	CR	0/2023	S E					

3-60 =

501F 5-60

3 - 58 -

Client:	Health Infrastructu	re	As Sa Allen Market State		Job No.:	9	E35821PR	
Project:	Proposed Alteratio	ns and Additions			Well No.		MW103	
Location:	Finley Hospital, 24	Dawe Avenue, FINI	_EY, NSW		Depth (m	n):	52	
WELL FINE	SH DETAILS						- P	
	Gatic	Cover 🖳	Standpi	ре		Other (describe		
WELL DEV	ELOPMENT DETAI					1		
Method:		Percleaner	I lung	SWL - Before	m):	3	*********	
Date:	******************	20/9/73		Time – Before:		0.8:		
Undertaken		02		SWL – After (m):	4.2	20	
Total Vol. R	Removed:	201		Time – After:		10:0	⁷ C	
PID Readin		0.5			EWENT AND DODGE			20230
Comments:		-1170						
	MENT MEASUREME Time Removed			DO I	EC			
	(L)	Temp (°C)		ng/L)	(µS/cm)	pН	Eh (mV)	
	(17.9	1		460	7-33	83.6	
	5	18-2	2		306	7 13	853	
	10	18 1	2 8	10	362	7 11	98.1	
	15	19-3	3.		1766	7-10	98.7	
	20	18.2	/.		574	7 54	102.8	*****
						- January Douglasses		
		and the state of t			pullogramical alam	1		
		woll our	000 01	10 charale	dra			
			I control of					
		I-pump,	not wor	une after	r 101	- bailer	wood those	al
		10		J				
		· Veru /	19/4 511	t load	n.cun	_		
		(0					
		- bailer	was	bringini	up just	SILF FOR	wards the	01
				77			1	

************					******************	.		
					essaesia saasta 1999			
					·	***************************************	····	****
		1		·····		***************************************		
	^	1	· · ·	****************		***************************************	T	
Comments:	Odours (YE\$ / N	O), NAPL/PSH (Y	ES / NO), Sh	een (YES / NO)	Steady State	Achieved (YES /	(NO)	
			100					
YSI Used: 4	4	very mon	SILY 19	000	nn ,	1-m 10	onorge	
-		very high	at fu	el like	swell	- due h	o USTs	
Tootod Day	0.	8 Rem	arks:					
Tested By:		I- Ste	ady state cond	litions				-
rested by.				Li logo thee O.O.	nite diffe	- in the new	Mr. Inna Abra - 400/	
	201	9/97 - Diff	erence in the p		nits, difference	e in the conductive	ity less than 10%	
Date Tested:	20 /	9/23 - Diff and	erence in the p SWL stable/no	t in drawdown			ity less than 10%	

SW4 4-20

	Health Infrastructure			Job No	u.:	E35821PR
Project:	Proposed Alterations and Additions			Well No).:	mu 10 4
ocation:	Finley Hospital, 24 Dawe Avenue, FINLEY, NSW			Depth ((m):	5-2
VELL FINIS	SH DETAILS					1
			1 –			10-10
		over 🗵	Standpipe		Other (describe)	
	ELOPMENT DETAIL		T A Jour			/ -
Method: Date:		Vero sopwen	Templopment fum SWL - Before (m):			60
Undertaken By:				***************************************	10:24	
Total Vol. Removed:		tend of the country on shall the correct become	OB SWL – After (m): 16L Time – After:		4.75	
PID Reading (ppm):		102	11me – 7	Arter: 	10:	50
Comments:		1.5				
	IENT MEASUREMEN	ITS				
Volu	me Removed	Temp (°C)	DO	EC	рН	Eh (mV)
	(L)		(mg/L)	(µS/cm)		
		17.5	6 4	3009	7-13	140.2
		17.6	7.6	2529	7.01	140 6
10		17 9	2.2	2874	6.98	138-1
						
lailes - baile	used	A stapped	o sut	ng after	\$4	
		well pun	good effect	vely di	4	
	_), NAPLIPSH (YES	_	_		(NO)
Comments:	t very h	Remark - Steady	se:	1-m	rechage	
'SI Used: 4	t very a	Remark - Steady - Differe and SW	load, brown	n 0.2 units, difference	recharge	ty less than 10%

Appendix I: Guidelines and Reference Documents

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2004). Environmentally Hazardous Chemicals Act 1985. Chemical Control Order in Relation to Scheduled Chemical Wastes

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW Health Infrastructure, (2021). Design Guidance Note No. 030. Site Investigations: Project Opportunities and Constraints

NSW Health Infrastructure, (2020). Design Guidance Note No. 060. Contaminated Land Management Framework

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

Appendix J: Sampling, Analysis & Quality Plan

REPORT TO HEALTH INFRASTRUCTURE

ON

SAMPLING, ANALYSIS AND QUALITY PLAN (SAQP)

FOR

DETAILED (STAGE 2) SITE INVESTIGATION (DSI)

AT

FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Date: 31 August 2023 Ref: E35821PRrpt2

JKEnvironments www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Craig Ridley

Associate | Environmental Scientist

Report reviewed by:

Brendan Page

Principal | Environmental Scientist

CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E35821PRrpt2	Final Report	31 August 2023

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Table of Contents

1	INTR	ODUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	SCOPE OF WORK	2
2	SITE I	NFORMATION	3
	2.1	BACKGROUND	3
	2.2	SITE IDENTIFICATION	3
	2.3	SITE DESCRIPTION SUMMARY	4
	2.4	SUMMARY OF GEOLOGY AND HYDROGEOLOGY	5
	2.5	SUMMARY OF SITE HISTORY INFORMATION	6
3	CONC	CEPTUAL SITE MODEL	7
	3.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	7
	3.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	8
4	SAMI	PLING, ANALYSIS AND QUALITY PLAN	g
	4.1	DATA QUALITY OBJECTIVES (DQO)	9
	4.2	SOIL SAMPLING PLAN AND METHODOLOGY	11
	4.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	13
	4.4	LABORATORY ANALYSIS AND PROPOSED ANALYTICAL SCHEDULE	15
5	SITE	ASSESSMENT CRITERIA (SAC)	16
	5.1	Soil	16
	5.2	GROUNDWATER	18
6	DSI R	EPORTING REQUIREMENTS	19
7	LIMIT	TATIONS	20

List of Tables

Table 2-1: Site Identification	3
Table 2-2: Summary of Historical Land Uses / Activities	6
Table 3-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	7
Table 3-2: CSM	8
Table 4-1: Soil Sampling Plan and Methodology	11
Table 4-2: Proposed Groundwater Sampling Plan and Methodology	13
Table 4-3: Laboratory Details	15
Table 5-1: Details for Asbestos SAC	16
Table F.2: Waste Categories	17

Attachments

Appendix A: Report Figures

Appendix B: Report Explanatory Notes

Appendix C: Guidelines and Reference Documents

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Asphaltic Concrete	AC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Below Ground Level	BGL
Benzene, Toluene, Ethylbenzene, Xylene	ВТЕХ
Before You Dig Australia	BYDA
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	СоРС
Chain of Custody	coc
Conceptual Site Model	CSM
Contaminant Threshold	СТ
Development Application	DA
Design Guidance Note	DGN
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environment Protection Authority	EPA
Fibre Cement Fragment(s)	FCF
Hazardous Building Materials	HAZMAT
Health Investigation Level	HILs
Health Screening Level	HSL
International Organisation of Standardisation	ISO
JK Environments	JKE
JK Geotechnics	JKG
Lab Control Spike	LCS
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
No Set Limit	NSL
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН
Polychlorinated Biphenyls	PCBs
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Preliminary Site Investigation	PSI
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
State Environmental Planning Policy	SEPP
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC

Standard Penetration Test	SPT
Standing Water Level	SWL
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
Urban Residential and Public Open Space	URPOS
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC

Units

Kilometres	km
Litres	L
Metres BGL	mBGL
Metres	m
Millivolts	mV
Millilitres	ml or mL
Micrograms per Litre	μg/L
Milligrams per Kilogram	mg/kg
Milligrams per Litre	mg/L
Parts Per Million	ppm
Percentage	%
Percentage weight for weight	%w/w

1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed hospital redevelopment at Finley Hospital, 24 Dawe Avenue, Finley, NSW ('the site'). The site location is shown on Figure 1 and the investigation will be confined to the site boundaries as shown on Figure 2 attached in the appendices.

The DSI is required to inform the masterplan and design stage of the proposed hospital redevelopment. JKE note that a DSI is the second step in the contaminated land assessment process for planning approval with regards to Chapter 4 of State Environmental Planning Policy (Resilience and Hazards) 2021¹.

This report has been prepared to document the Sampling, Analysis and Quality Plan (SAQP) for the DSI.

JKE have previously undertaken a Preliminary Site Investigation (PSI) at the site. A summary of this information has been included in Section 2. A geotechnical investigation was undertaken in conjunction with the PSI by JK Geotechnics (JKG). Reference is to be made to the JKG geotechnical report² for further details.

1.1 Proposed Development Details

JKE understand that the proposed development is currently in the master planning and early design phase of the project. The proposed development will likely include additions to the existing buildings and/or new buildings constructed on the site. The development may also include refurbishment of the existing buildings.

Conceptual drawings were not provided to JKE. However, we anticipate that the proposed development will likely be constructed consistent with the existing levels and expect that only minor earthworks (cut/fill) would be required to accommodate the proposed development.

1.2 Aims and Objectives

The DSI aims to further characterise the site and make an assessment of the soil contamination conditions, and inform the preparation of a Remediation Action Plan (RAP), if required. The objectives of the DSI are to:

- Supplement the PSI data by completing the DSI, including investigation of the soils in accessible areas;
- Assess the potential risks posed by contamination to the receptors identified in the Conceptual Site Model (CSM);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

² JKG, (2023). Report to Health Infrastructure on Geotechnical Investigation for Proposed Alterations and Additions at Finley Hospital, 24 Dawe Avenue, Finley, NSW. (Ref: 35821YFrpt, dated 14 June 2023) (referred to as JKG report)

¹ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

1.3 Scope of Work

The SAQP has been prepared generally in accordance with a JKE proposal (Ref: EP58924PR) of 28 June 2023 and written acceptance from the client of 2 August 2023.

The scope of work included review of the PSI and preparation of an SAQP with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)³, other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁴ and Design Guidance Note No. 030 (2021)⁵.

A list of reference documents/guidelines is included in the appendices.

⁵ Health Infrastructure, (2021). Design Guidance Note No. 030. Site Investigations: Project Opportunities and Constraints. (referred to as DGN 030)

³ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

⁴ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 Background

A PSI was previously undertaken by JKE in 2023⁶. The scope of the PSI included a review of site history and site information, a site inspection and soil sampling from 12 locations (BH1 to BH9 and TP10 to TP12 inclusive). The sampling locations are shown on Figure 2 attached in the appendices.

The site was historically used for public recreation until circa 1960, and has been used for a hospital since. Potential contamination sources identified at the site and the immediate surrounds included:

- Historic filling activities;
- Underground storage tanks (USTs) present within the site;
- Use of pesticides;
- Hazardous building materials present within existing and/or former structures;
- On-site generator and associated fuel storage; and
- Maintenance workshop/gardeners shed and associated flammable good store

The PSI identified fill (i.e. historically imported or placed soils) to depths of approximately 0.2m to 0.8m below ground level (BGL), underlain by sandy, silty and clayey alluvial soils. Groundwater seepage was encountered in boreholes BH2 to BH5 inclusive at depths of approximately 3.5m to 4.5mBGL. On completion of auger drilling, the standing water levels (SWLs) in the boreholes were measured to range from approximately 3.8m to 4.8mBGL. The fill typically comprised silty sand, sandy and/or clayey silt and silty clay with inclusions of ash, gravel and root fibres. No stained or odorous fill soils were encountered.

The PSI identified fill soils at one location impacted by hydrocarbons (total recoverable hydrocarbons – TRHs) at concentrations that were above the adopted site assessment criteria (SAC).

The PSI did not identify contamination that would preclude the proposed development and a trigger for remediation was not identified. The following was recommended:

- Undertake a DSI to better assess the risks associated with the areas of environmental concern (AEC)/potential sources of contamination and to assess whether remediation is required; and
- If required (based on the findings of the DSI), a Remediation Action Plan (RAP) is to be prepared. Any
 requirements documented in a RAP are to be implemented and the site is to be remediated and
 validated.

2.2 Site Identification

Table 2-1: Site Identification

Current Site Owner	Health Administration Corporation	
(Certificate of Title):		
	51.1.1000	
Site Address:	24 Dawe Avenue, Finley, NSW	
Lot & Deposited Plan:	Lot 246 in DP1016411	

⁶ JKE, (2023). Report to Health infrastructure on Preliminary (Stage 1) Site Investigation for Proposed Alterations and Additions at Finley Hospital, 24 Dawe Avenue, Finley, NSW. (Ref: E35821PRrpt, dated 21 June 2023). (referred to as PSI)

Current Land Use:	Hospital
Proposed Land Use:	Hospital
Local Government Area:	Berrigan Shire Council
Current Zoning:	RU5: Village
Site Area (m²) (approx.):	20,000
RL (AHD in m) (approx.):	108-109
Geographical Location (decimal degrees) (approx.):	Latitude: -35.641713
	Longitude: 145.568239
Site Location Plan:	Figure 1
Proposed DSI Sample Location Plan:	Figure 2

2.3 Site Description Summary

The site is located in a predominantly residential area of Finley and is bound by Dawe Avenue to the North and Scoullar Street to the south. The site is located approximately 1km to the south-west of Finley Lake (a man-made lake). The regional topography is characterised by a typical flood plain with near level topography. The site itself has similar topography as the surround with near level terrain.

A walkover inspection of the site was undertaken by JKE on 11 May 2023 for the PSI. The inspection was limited to accessible areas of the site and immediate surrounds. An internal inspection of the main hospital and staff accommodation buildings was not undertaken. A summary of the inspection findings is presented below:

- At the time of the inspection, the majority of the site was utilised as a hospital with associated accommodation and maintenance areas;
- Several single-storey buildings of brick and fibre cement construction with metal roofing were observed across the site. The buildings appeared to generally be in good condition based on a cursory inspection;
- A stand-alone garage/shed of metal sheet construction was located in the west of the site and several
 metal carport and shade structures were observed across the site. The garage/shed and shade
 structures appeared to be in good condition based on a cursory inspection;
- A crescent-shaped asphaltic concrete (AC) paved driveway provided vehicular ingress/egress from
 Dawe Avenue. A second AC driveway extended in a southerly direction along the western site
 boundary from Dawe Avenue which provided vehicular access to the neighbouring property. AC
 pavement connected these two driveways and was used for ambulance transfers. The pavements
 appeared to be generally in good condition based on a cursory inspection;
- A gravel driveway was located in the south of the site, extending north-westerly from the southeastern corner of the site. A gravel carpark was also located in the south of the site;

- Minor quantities of paints, fuel, solvents (mineral turpentine), lubricants and grease were typically stored within the maintenance building (see Figure 2). The products were stored in appropriate containers;
- Two underground storage tanks (USTs) were observed to the west of the maintenance shed and there was a generator to the north-east of the USTs (see Figure 2). JKE was advised by hospital staff that the USTs were no longer in use, though previously contained fuel oil for the on-site boilers;
- Mature native trees (approximately 5m in height) were observed in the north, east and south-east of
 the site. Flowering plants in formed gardens and shrubbery were observed in the north of the site near
 the main hospital entrance, and within the west of the site. The vegetation appeared to be generally
 healthy based on a cursory inspection; and
- Sensitive environments such as wetlands, ponds, creeks or extensive areas of native vegetation were not observed on site or in the immediate surrounds.

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North Dawe Avenue, with low-density residential and agricultural land use beyond;
- South Scoullar Street with low-density residential and retirement living (Alumuna) beyond;
- East Diggers Park (recreational space) with Donaldson Street and low-density residential beyond; and
- West residential care facility and medical centre (Finley Regional Care), with Hamilton Street and agricultural land use beyond.

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.4 Summary of Geology and Hydrogeology

2.4.1 Regional Geology

Regional geological information presented in the PSI indicated that the site is underlain by alluvial floodplain deposits, which typically consists of silt, very fine to medium-grained lithic to quartz rich sand and clay.

2.4.2 Acid Sulfate Soil (ASS) Risk and Planning

Acid sulfate soil (ASS) risk and planning information presented in the PSI indicated that the site is not located within an ASS risk area.

2.4.3 Hydrogeology and Groundwater

Hydrogeological information presented in the PSI indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There was a total of 42 registered bores within 2km of the site. In summary:

- The nearest registered bore was located approximately 110m to the south of the site. However, this bore had been decommissioned;
- The nearest functioning borehole was located approximately 160m to the east of the site. JKE note this bore is located within a residential property and is assumed to be used for irrigation purposes;

- The drillers log information from the closest registered bores typically identified fill, sand and clay soils with some silt and gravel to terminal depths of approximately 7.3m below ground level (BGL) to 75mBGL. Standing water levels (SWLs) were not recorded in the nearest bores, though ranged from approximately 5.6mBGL to 8.8mBGL in the bores located approximately 600m to 800m to the southeast of the site; and
- The nearest bore to encounter bedrock was approximately 1.2km to the north-east of the site and encountered granite bedrock at a depth of approximately 180mBGL.

The information reviewed for the PSI indicated that the subsurface conditions at the site are likely to consist of moderate to high permeability (alluvial) soils overlying relatively deep bedrock. Abstraction and use of groundwater at the site or in the immediate surrounds may be viable under these conditions, however the use of groundwater is not proposed as part of the development as far as we are aware. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur. JKE note that groundwater may be used in the vicinity of the site for irrigation purposes.

Considering the local topography, surrounding land features and groundwater observations presented in the JKG report, JKE anticipate groundwater to flow towards the south. Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is Finley Lake, located approximately 1km to the north-east of the site. This is inferred up-gradient of the site. This water body is man-made and it is unknown whether there is any hydraulic connectivity between the lake and the aquifer.

The nearest natural surface water body is the Tuppal Creek, located approximately 12km to the south-west of the site. Due to the distance from the site, this water body is not considered to be a receptor.

2.5 Summary of Site History Information

A time line summary of the historical land uses and activities is presented in the following table. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE.

Table 2-2: Summary of Historical Land Uses / Activities

Year(s)	On-site - Potential Land Use / Activities	Off-site - Potential Land Use / Activities
Prior to 1897	Public recreation (vacant land).	Agricultural (crops and grazing), public recreation and low-density residential.
1897 – c1960	Land dedicated for public recreation (race course).	
	The aerial historical photographs indicate that land clearing/construction of a dedicated race course did not occur within the site.	
	1955: The dedication of land for a race course was revoked.	
c1960 to date	Hospital and associated activities. Possible filling/importation of materials.	

3 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

3.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Table 3-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	CoPC
Fill material – The site has been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated, or the material could have been 'site won' and placed during minor earthworks required for regrading paved areas or prior to construction of buildings.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), PAHs, organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
The PSI identified filling to depths of approximately 0.2mBGL to 0.8mBGL. The fill contained inclusions of ash and gravel.	
<u>Fuel storage</u> – Two USTs were identified at the site (see Figure 2). The USTs were historically used to store fuel oil for the boilers at the site.	TRH, BTEX and PAHs
Maintenance Workshop/Gardeners Shed – The site includes a maintenance workshop/gardeners shed and a flammable goods store (see Figure 2). It is possible that leaks/spills and/or releases of oils, solvents and fluids (e.g. turpentine/mineral spirits associated with typical painting activities, rather than chlorinated compounds) may have occurred.	Heavy metals, TRHs and PAHs.
On-site Generator — A back-up generator was observed to the east of the plant room of the main hospital building (see Figure 2). The generator appeared to be self-contained. Minor leaks and/or spills of fuel/oils may have occurred during maintenance and/or use.	TRH, BTEX and PAHs.
<u>Use of pesticides</u> – Pesticides may have been used beneath the buildings and/or around the site.	Heavy metals and OCPs.
Hazardous Building Material – Hazardous building materials may be present as a result of former building and demolition (renovation) activities. These materials have previously been identified in the existing buildings/structures on site.	Asbestos, lead and PCBs.

7

3.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 3-2: CSM

Table 3-2. CSIVI	
Potential mechanism for contamination	The potential mechanisms for contamination are most likely to include 'top-down' impacts, spills and subsurface release. Subsurface release relates to the USTs.
Affected media	For the DSI, soil and groundwater have been identified as the potentially affected media. The need to assess soil vapour will depend on the initial assessment of the soil and groundwater conditions.
Receptor identification	Human receptors include site occupants/users (including adults and children) in a healthcare setting, construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users (in residential and retirement living setting) and groundwater users (recreation/irrigation use). Ecological receptors include terrestrial organisms and plants within unpaved and
	landscaped areas.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX), and primary/secondary contract with groundwater for irrigation. The potential for exposure would typically be associated with the construction and excavation works, future use of the site, or groundwater use associated with the use of bore water. Potential exposure pathways for ecological receptors include primary/direct contact and ingestion.
	Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings.
Potential exposure mechanisms	The following have been identified as potential exposure mechanisms for site contamination:
	 Vapour intrusion into the buildings (from soil or groundwater contamination); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; and Contact with groundwater during construction and/or migration of groundwater off-site into areas where groundwater is being utilised as a resource (i.e. for
	irrigation).
Presence of preferential pathways for contaminant movement	Major services (i.e. on the 'Before You Dig Australia' [BYDA] plans) were not identified that would be expected to act as preferential pathways for contamination migration. However, it is noted that localised services exist that are not shown on those plans and the details of such services must be reviewed/considered in further detail in the event mobile contamination is identified.

4 SAMPLING, ANALYSIS AND QUALITY PLAN

4.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

4.1.1 Step 1 - State the Problem

The CSM identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. The PSI identified elevated concentrations of TRHs in shallow fill in one location in the south-east of the site.

Investigation data is required to better characterise the site, assess the potential risks posed by the contaminants in the context of the proposed development, and inform the preparation of a RAP (if required). This information will be considered by the project team in the design and delivery of the project as well as by the consent authority in exercising its planning functions in relation to the development proposal.

A waste classification is required prior to off-site disposal of excavated soil/bedrock.

4.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the investigation are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is remediation required?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

4.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant environmental data from previous reports;
- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils, groundwater and fibre cement (if encountered) for the CoPC identified in the CSM; and
- Field and laboratory QA/QC data.

4.1.4 Step 4 - Define the Study Boundary

The sampling will be confined to the site boundaries as shown on Figure 2 and will be limited vertically to approximately 0.5-1m into natural soils, with a maximum anticipated investigation depth of approximately 6mBGL for the installation of monitoring wells (spatial boundary). The final depth will depend on the encountered site conditions and will be noted in the DSI. At this stage, the sampling is scheduled to be completed in September 2023 (temporal boundary).

Sampling will not be undertaken within the existing building footprints due to access constraints.

4.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

4.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 5. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For the DSI, the individual results will be assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values is not currently proposed as the sampling locations will be selected judgementally.

4.1.5.2 Field and Laboratory QA/QC

Field QA/QC will include analysis of inter-laboratory duplicates (minimum of 5% of primary samples), intralaboratory duplicates (minimum of 5% of primary samples), trip spike (for volatiles), trip blank and rinsate samples (one per week of sampling to assess the adequacy of field practices).

Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, will be included in the Data Quality (QA/QC) Evaluation presented in the DSI report.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which will be outlined in the laboratory reports. These criteria are developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, the most conservative concentration reported are to be adopted.

4.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

4.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis has been adopted which is that, there is considered to be a complete SPR linkage for the CoPC identified in the CSM unless this linkage can be proven not to (or unlikely to) exist. The null hypothesis has been adopted for this investigation.

Quantitative limits on decision errors have not been established as the sample plan is not probabilistic.

4.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. Adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design will be optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data will be collected.

The sampling plan and methodology are outlined in the following sub-sections.

4.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology proposed for the DSI is outlined in the table below:

Table 4-1: Soil Sampling Plan and Methodology

Aspect	Input
Sampling	Samples will be collected from 32 locations (BH/TP101 to BH/TP133) as shown on the attached
Density	Figure 2. In conjunction with the PSI sampling locations within the site boundaries (BH1 to BH5,
	BH7, BH8 and TP10 to TP12), a total of 42 locations will be sampled. Based on the site area
	(20,000m ²), this number of locations corresponded to a sampling density of approximately one
	sample per 475m² and meets the DGN 030 requirements of a minimum of one sample per 500m².
	Due to the judgemental sampling plan (discussed below), the sampling plan does not strictly meet the requirements for hotspot identification, as outlined in the NSW EPA Sampling Design Part 1 – Application (2022) ⁷ contaminated land guidelines. Though we note that, overall, the total number of samples exceeds and the density is higher than the total number of locations that are proposed in these guidelines for the hotspot identification method.

NSW EPA, (2022). Sampling design part 1 - application. (referred to as EPA Sampling Design Guidelines 2022)

Aspect	Input
Sampling Plan	The sampling locations will be positioned judgementally for general site coverage. A square grid overlay (approximately 22m x 22m) has been prepared for the site and sample locations will be selected (one per grid) based on access constraints and the existing data set. JKE consider this approach will provide suitable spatial coverage of the site for the DSI objectives. The grid overlay and proposed sampling grids are shown on Figure 2 attached in the appendices.
	The soil sampling depth will be limited to approximately 0.5-1m into natural soils. Therefore, the test pits and boreholes are anticipated to be limited to depths of approximately 1-2mBGL. Deeper soil samples may be collected from the boreholes targeting the USTs and generator, based on site observations.
Set-out and Sampling Equipment	Sampling locations will be set out using a tape measure and/or a hand-held GPS unit (with an accuracy of ±5m). In-situ sampling locations will be checked for underground services by an external contractor prior to sampling.
	The majority of samples will be collected using an excavator. Samples will be obtained from the test pit walls or directly from the bucket by hand. Where sampling occurs from the bucket, JKE will collect samples from the central portion of large soil clods, or from material that is unlikely to have come into contact with the bucket.
	Some locations (generally within paved areas) will be sampled using a drill rig equipped with spiral flight augers (150mm diameter). Soil samples will be obtained from a Standard Penetration Test (SPT) split-spoon sampler, and/or directly from the auger.
Sample	Soil samples will be obtained in accordance with our standard field procedures. Soil samples will
Collection and Field QA/QC	be collected from the fill and natural profiles based on field observations. The sample depths will be documented on the logs.
	Samples will be placed in glass jars with plastic caps and Teflon seals with minimal headspace. Samples for asbestos analysis will be placed in zip-lock plastic bags. During sampling, soil at selected depths will be split into primary and duplicate samples for field QA/QC analysis. The field splitting procedure includes alternately filling the sampling containers to obtain a representative split sample.
Field Screening	A portable Photo-ionisation Detector (PID) fitted with a 10.6mV lamp will be used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs will be undertaken on soil samples using the soil sample headspace method. VOC data will be obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases. PID calibration records will be maintained throughout the project.
	 The field screening for asbestos quantification included the following: A representative bulk sample (approximately 10L sample, to the extent achievable based on the sample return) will be collected from fill at 1m intervals, or from each distinct fill profile. The bulk sample intervals will be documented on the logs; Each bulk sample was weighed using an electronic scale; Each bulk sample will be passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement. Any soil clumps/nodules will be disaggregated. If cohesive soils (i.e.

Aspect	Input
	 stiff clays) are encountered, the bulk sample will be placed on a contrasting support (blue tarpaulin) and inspected for the presence of fibre cement fragments (FCF); The condition of fibre cement or any other suspected asbestos materials will be noted on the field records; and If observed, any fragments of fibre cement in the 10L sample will be collected, placed in a ziplock bag and assigned a unique identifier. Calculations for asbestos content will be undertaken based on the requirements outlined in Schedule B1 of NEPM (2013).
Decontami- nation and Sample	Sampling personnel will use disposable nitrile gloves during sampling activities. Re-usable sampling equipment was decontaminated using Decon and potable water.
Preservation	Soil samples will be preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, the samples will be stored temporarily in fridges in the JKE warehouse before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.

4.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology proposed for the DSI is outlined in the table below:

Table 4-2: Proposed Groundwater Sampling Plan and Methodology

Aspect	Input
Sampling Plan	Groundwater monitoring wells were previously installed in BH1 (MW1) and BH3 (MW3) by JKG as part of the geotechnical investigation. Additional groundwater monitoring wells will be installed in BH101 (MW101), BH103 (MW103) and BH104 (MW104). The wells will be positioned to establish background groundwater conditions at the site.
	Considering the topography and the location of the nearest down-gradient water body, MW101 is considered to be in the up-gradient area of the site and expected to provide an indication of groundwater flowing onto (beneath) the site from the north. MW3 is considered to be in the intermediate area of the site and is expected to provide an indication of groundwater flowing across (beneath) the site. MW1 is considered to be in the down-gradient area of the site and is expected to provide an indication of groundwater flowing beyond the down-gradient site boundary. MW103 is targeted in close proximity to the location of the disused USTs, and MW104 is targeted in close proximity to the location of the current back-up generator. Various underground services exist in these areas and the final locations will be confirmed following the services scan during fieldwork.
Monitoring Well Installation	The monitoring well construction details will be documented on the appropriate borehole logs. The monitoring wells will be installed to depths of approximately 4.5m to 6mBGL.
Procedure	The wells will generally be constructed as follows:
	• 50mm diameter Class 18 PVC (machine slotted screen) installed in the lower section of the well to intersect groundwater;
	 50mm diameter Class 18 PVC casing installed in the upper section of the well (screw fixed); A 2mm sand filter pack used around the screen section for groundwater infiltration;
	 A hydrated bentonite seal/plug used on top of the sand pack to seal the well; and A gatic cover installed at the surface with a concrete plug to limit the inflow of surface water.

Aspect	Input
	The monitoring well installation, including the screen lengths, is considered suitable for assessment of general groundwater quality with regards to Table 5 in Schedule B2 of NEPM 2013.
Monitoring Well Development	The monitoring wells will be developed after installation using a submersible electrical pump. During development, the following parameters will be monitored using calibrated field instruments:
	Standing water level (SWL) using an electronic dip meter; and
	pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter.
	Steady state conditions are considered to have been achieved when the difference in the pH measurements is less than 0.2 units, the difference in conductivity is less than 10%, and when the SWL is not in drawdown.
	In the event that groundwater in-flow is relatively slow, the development will continue until the wells are effectively dry.
	The field monitoring records and calibration data will be included in the DSI report.
Groundwater Sampling	The monitoring wells will be allowed to recharge for approximately five to seven days after development. Prior to sampling, the monitoring wells will be checked for the presence of Light Non-Aqueous Phase Liquids (LNAPL) using an inter-phase probe electronic dip meter.
	The monitoring well head space will be checked for VOCs using a calibrated PID unit. The samples will be obtained using a peristaltic pump.
	 During sampling, the following parameters will be monitored using calibrated field instruments: SWL using an electronic dip meter; and pH, temperature, EC, DO and Eh using a YSI Multi-probe water quality meter.
	Steady state conditions are considered to have been achieved when the difference in the pH measurements is less than 0.2 units, the difference in conductivity is less than 10%, and when the SWL was not in drawdown.
	Groundwater samples will be obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples are to be obtained by alternate filling of sample containers. This technique is adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling will be transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data will be included in the DSI report.
Decontaminant and Sample Preservation	During development, the development pump and hose will be flushed between monitoring wells with a potable water and Decon solution, followed by a pulse of potable water (single-use tubing will be used for each well). This will also occur for the inter-phase probe electronic dip meter during development and sampling. The groundwater sampling process utilises a peristaltic pump and single-use tubing, therefore no decontamination procedure for the sampling is considered necessary.
	Rinsate samples will be obtained during the decontamination process as part of the field QA/QC.

Aspect	Input
	The samples will be preserved with reference to the analytical requirements and placed in an insulated container with ice or ice bricks. On completion of the fieldwork, the samples may be temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

4.4 Laboratory Analysis and Proposed Analytical Schedule

Samples are to be analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. The proposed laboratory details are provided in the table below:

Table 4-3: Laboratory Details

Samples	Laboratory
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)

For the DSI, an allowance has been made for the following analysis:

- Up to 48 selected soil samples for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); PAHs; TRH; and BTEX;
- Up to 16 selected soil samples for: OCP; OPP; and PCBs;
- Up to 32 selected soil samples (500mL) for asbestos using laboratory quantification (gravimetric) methods;
- Up to six selected FCF, if found on or in soil, analysed for asbestos;
- Up to four targeted soil samples will be analysed for pH; CEC; and clay content for the calculation of EILs for selected metals;
- Targeted toxicity characteristic leachate procedure (TCLP) analysis for selected metals and PAHs for waste classification purposes; and
- Up to five groundwater samples for: heavy metals; TRH/BTEX; low level PAHs; pH; and EC.

The soil analysis will generally target the fill soils and the first contact of natural soils. Deeper samples may be analysed based on the results of the shallow soils and site observations. A staged approach to soil sample analysis is proposed to allow for targeting areas based on the results of the initial analysis round.

5 SITE ASSESSMENT CRITERIA (SAC)

The following SAC derived from the NEPM 2013 and other guidelines, as discussed in the following subsections, will be adopted for the DSI.

5.1 Soil

Soil data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

5.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A) HIL-A are selected as a conservative measure due to the extent of landscaping/unsealed areas and the limited information regarding potential development details;
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B).
 HSLs will be calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)⁸; and
- Asbestos will be assessed against the HSL-A criteria in soil and as present or absent in FCF. A summary
 of the asbestos criteria is provided in the table below:

Table 5-1: Details for Asbestos SAC

Guideline	Applicability	
Asbestos in Soil	The HSL-A criteria will be adopted for the assessment of asbestos in soil. The SAC adopted for asbestos are derived from the NEPM 2013 and based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021) ⁹ . The SAC include the following: No visible asbestos at the surface/in the top 10cm of soil; <0.01% w/w bonded asbestos containing material (ACM) in soil; and <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. Concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):	
	% w/w asbestos in soil =	

⁹ Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)

⁸ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Guideline	Applicability	
	% w/w asbestos in soil =	% asbestos content x bonded ACM (g)
		Soil weight (g)

5.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. The EILs will only be applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene will be increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹⁰;
- ESLs will be adopted based on the soil type; and
- EILs for selected metals will be calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹¹ as an initial screening; and
- Where exceedances of the EILs are recorded, representative samples will be analysed for pH, cation
 exchange capacity and/or clay content to select alternative ACL values presented in Schedule B(1) of
 NEPM (2013), based on the site-specific soil parameters.

5.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) will be considered.

5.1.4 Waste Classification

Data for the waste classification assessment will be assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹² as outlined in the following table:

Table 5-2: Waste Categories

Category	Description	
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste. 	
Restricted Solid Waste (non-putrescible)	 If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste. 	
Hazardous Waste	 If SCC > CT2 then TCLP not needed to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste. 	

¹⁰ Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997) (referred to as the Canadian Soil Quality Guidelines)

¹² NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Waste Classification Guidelines 2014)

¹¹ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4*. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Category	Description
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette.

5.2 Groundwater

Groundwater data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹³. Environmental values for the DSI include human uses (incidental contact and recreational water use), and human-health risks in non-use scenarios (vapour intrusion). Though the CSM did not identify ecological groundwater receptors (aquatic ecosystems), the data will be compared to ecological criteria for completeness.

5.2.1 Human Health

- HSLs for a 'low-high density residential' exposure scenario (HSL-A/HSL-B). HSLs will be calculated based on the soil type and the observed depth to groundwater; and
- The Australian Drinking Water Guidelines 2011 (updated 2021)¹⁴ will be multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. with bore water used for irrigation). These have been deemed as 'recreational' SAC.

5.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species will be adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁵. The 99% trigger values will be adopted where required to account for bioaccumulation. Low and moderate reliability trigger values will also be adopted for some contaminants where high-reliability trigger values don't exist.

¹⁵ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

¹³ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁴ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

6 DSI REPORTING REQUIREMENTS

A DSI report is to be prepared presenting the results of the investigation, in accordance with the NSW EPA Consultants Reporting on Contaminated Land, Contaminated Land Guidelines (2020)¹⁶.

 $^{^{16}}$ NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

7 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
 These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or land use. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

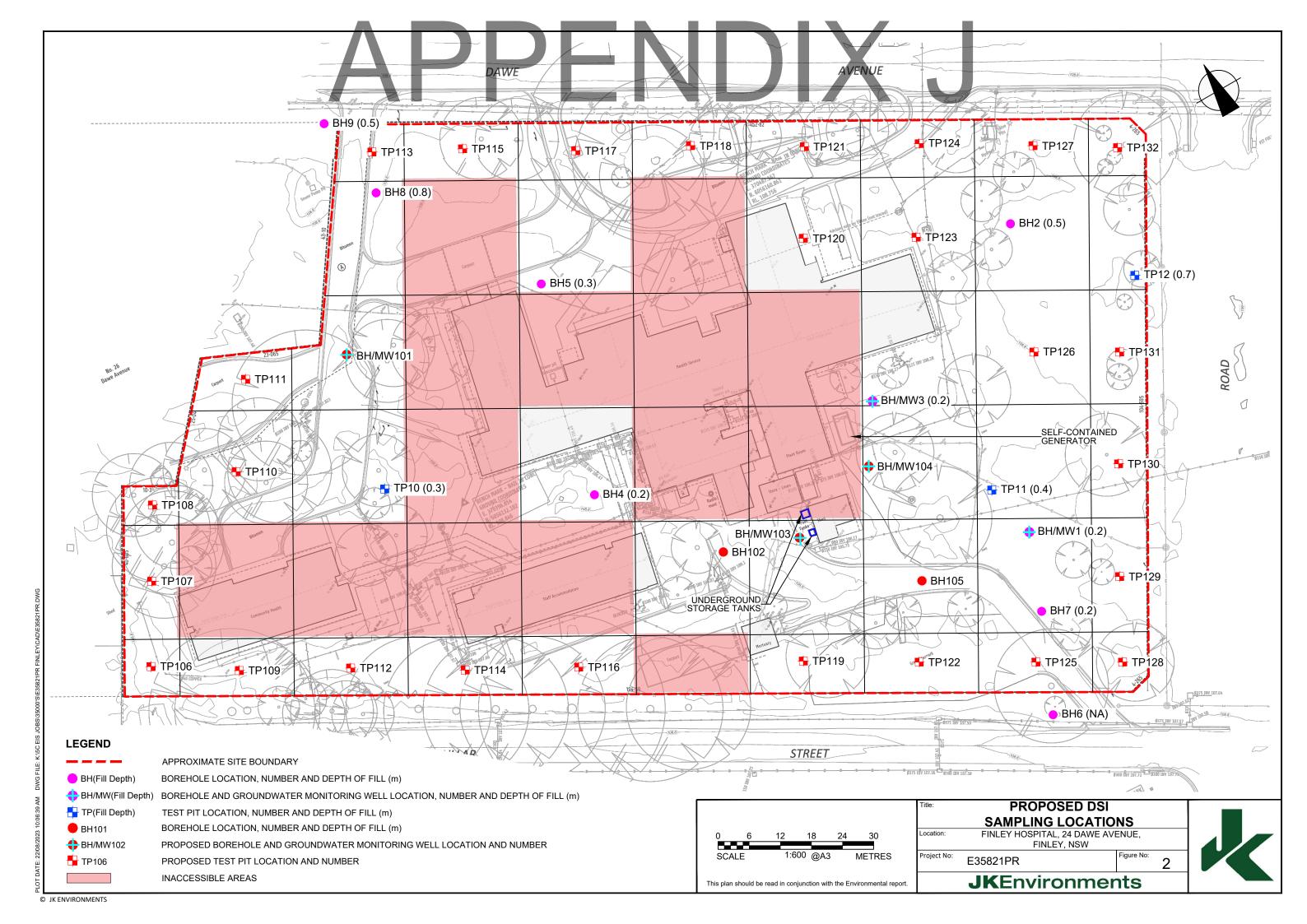
Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures

AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

This plan should be read in conjunction with the Environmental report.

SITE LOCATION PLAN


Location: FINLEY HOSPITAL, 24 DAWE AVENUE, FINLEY, NSW

Project No: E35821PR

JKEnvironments

Figure No:

Appendix B: Report Explanatory Notes

Standard Sampling Procedure (SSP)

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by JKE.

The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

A. Soil Sampling

- Prepare a borehole/test pit log or make a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The work area should be at a distance from the drill rig/excavator such that the machine can operate in a safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the JKE job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photo-ionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-1993¹⁷.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip meter or water whistle. Boreholes should be left open until the end of fieldwork. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

B. <u>Decontamination Procedures for Soil Sampling Equipment</u>

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - Stiff brushes; and
 - Plastic sheets.
 - > Ensure the decontamination materials are clean prior to proceeding with the decontamination.
 - > Fill both buckets with clean potable water and add phosphate free detergent to one bucket.

¹⁷ Standards Australia, (1993), Geotechnical Site Investigations. (AS1726-1993)

- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- > Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

C. Groundwater Sampling

Groundwater samples are more sensitive than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard. The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells (well
 development) to remove any water introduced during the drilling process and/or the water that is disturbed during
 installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior
 to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data
 sheets. The following information should be noted: the condition of the well, noting any signs of damage,
 tampering or complete destruction; the condition and operation of the well lock; the condition of the protective
 casing and the cement footing (raised or cracked); and, the presence of water between protective casing and
 well.
- Take the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micro-purge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment generally required includes:
 - Micropore filtration system or Stericup single-use filters (for heavy metals samples);
 - Filter paper for Micropore filtration system; Bucket with volume increments;
 - Sample containers: Teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - Flow cell;
 - pH/EC/Eh/T meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;
 - Low flow pump pack and associated tubing; and
 - Groundwater sampling forms.

- If single-use stericup filtration is not used, clean the Micropore filtration system thoroughly with distilled water prior to use and between each sample. Filter paper should be changed between samples. 0.45um filter paper should be placed below the glass fibre filter paper in the filtration system.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow/micro-purge sampling equipment to reduce the disturbance of the water column and loss of volatiles.
- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential and groundwater levels are monitored (where possible) using calibrated field instruments to assess the development of steady state conditions. Steady state conditions are generally considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles or plastic bottles.
- All samples are preserved in accordance with water sampling requirements detailed in the NEPM 2013 and
 placed in an insulated container with ice. Groundwater samples are preserved by immediate storage in an
 insulated sample container with ice as outlined in the report text.
- Record the sample on the appropriate log in accordance with AS1726:1993. At the end of each water sampling complete a chain of custody form.

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)¹⁸ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)¹⁹. The NEPM (2013) is consistent with these documents.

A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

¹⁸ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

¹⁹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. Blanks

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix C: Guidelines and Reference Documents

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Health Infrastructure, (2021). Design Guidance Note No. 030. Site Investigations: Project Opportunities and Constraints

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2022). Sampling design part 1 - application, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia